

ThyssenKrupp Group Structure

7 business areas including Steel Europe

^{*)} Discontinued operation (as of September 30th, 2011). Carved-out new entity is called Inoxum.

Business Area Steel Europe Company profile

Key figures 2010/2011

Sales € 12.8 bn Employees (30.9.) 28,843

Operating Units

ThyssenKrupp Steel Europe AG Volumeplayer

Processing Nicheplayer

Key strategic elements

- Focus on premium flat carbon steel products
- Optimum realization of economies of scale and differentiation potential through "largescale, multiple niche" approach
- Systematic strengthening of the well acknowledged technological competencies in processes and products
- Continuous development of innovative steel grades to achieve technology leadership in all relevant product groups

Internationalization of ThyssenKrupp

Expansion of relationships with international customers

Lightweight Design & innovative Steels

Highstrength grades

R&D activities at ThyssenKrupp Steel Europe

- Today's steel grade portfolio
- · Future developments

Hot stamping

- New Boron steels with higher strength (MBW[®] 1900) or higher elongation
- Optimized processes & technologies
- GammaProtect[®]: cathodic corrosion protection for direct hot stamping

Sandwich materials

- LITECOR[®]
- Massive weight saving at extremely attractive lightweight costs
- · Innovative material for automotive lightweight design

Life cycle assessment

- Evaluation of the environmental impacts throughout the product life cycle
- Extraction material manufacturing use phase recycling

Innovative steels for the automobile industry

Time horizon today ... 15 years

*as delivered Tensile strength R_m (MPa)

Density reduced (particle strengthened) steels Pre-development

- Chemical composition: high alloyed steel with light elements and low carbon content
- Microstructure: ferritic matrix with a fine distribution of particles

- high yield strength (350-500 MPa) and tensile strength (Rm = 450-650 MPa) by solid solution hardening and particle strengthening
- o significant reduced density ($\Delta \rho$ = 8-13%) compared to conventional steels
- Application: BIW components with reduced weight and improved Eigen frequencies
- Status: laboratory developments carried out; due to the chemical composition specific process facilities and parameters necessary, industrial production trials in preparation

InCar®-BIW: Several Components, Weight reduction: -13 kg (-13 %)

Lightweight Design & innovative Steels

Highstrength grades

R&D activities at ThyssenKrupp Steel Europe

- Today's steel grade portfolio
- Future developments

Hot stamping

- New Boron steels with higher strength (MBW[®] 1900) or higher elongation
- Optimized processes & technologies
- GammaProtect®: cathodic corrosion protection for direct hot stamping

Sandwich materials

- LITECOR[®]
- Massive weight saving at extremely attractive lightweight costs
- · Innovative material for automotive lightweight design

Life cycle assessment

- Evaluation of the environmental impacts throughout the product life cycle
- Extraction material manufacturing use phase recycling

Materials and manufacturing strategies for hot forming application solution statements

Material → development of different steel grades and coatings

Challenge

 Optimization of functional properties for modern steel based lightweight design structures

Hotform Blanks → different steel grades or thickness

Tailored Tempering → adjusted heat treatment for varying strength level

Realization

 Implementation of lightweight strategy by new materials and manufacturing technologies

20110413_Warmumformung_Master_rev01.ppt

<Titel des Vortrags>

<Datum>

<Anlass, Referent>

Material trends in hot stamping

Development of new manganese-boron steels MBW®

- Increase in elongation at moderately lower strength level, e.g. R_m=1400 MPa
- Higher energy absorption capacity
- New joining partners for Hotform Blanks with strengths around 800 MPa

Series to be defined

- Increase in tensile strength up to 2000 MPa,
 e.g. MBW[®] 1900
- High potential for automotive lightweight engineering, especially for safety-related

Series 2010 2011 2012 2013 2014 2015

Tailor-made material properties possible by using Tailored Tempering

GammaProtect® from ThyssenKrupp Steel Europe

Cathodic corrosion protection for hot stamping

- Cathodic corrosion protection
- Outstanding forming properties in direct and indirect hot stamping process
- No alloying necessary
 - → Rapid heating possible
 - Shorter process times
- Easy to process using methods typical for auto parts
- Suitable for Hotform Blanks
- Components have already been stamped under production conditions

Hot-stamped B-pillar with cathodic corrosion protection

→ Now available: cathodic corrosion protection for the direct process

MBW® 1500 in 0.5 mm thickness

Further weight reduction due to reduced blank thickness

Customer benefits

- Further weight reduction by application of thinner blanks
- Enhancement of the MBW[®] 1500 +AS dimensions
- New possible applications for thin walled parts

Investigation results

• First field test successful (0.5 x 1250 mm)

Current status

- Suitability for series strip production will be tested by further field tests, width enlargement is planned
- Further coils under production trials
- First test material available
- → Weight reduction by use of thinner blanks is possible

Extended applications for hot stamping

Tailored Tempering

 Tool with different temperature zones for defined cooling rates

 Increased part complexity in comparison to cold stamping, yet at the same time extremely high material strengths

- Elimination of components (lower B-pillar reinforcement) and the upper/ lower welded assembly B-pillar
- Targeted increase in deformation reserve in lower area of B-pillar reinforcement
- Soft transition between strength zones has positive impact on crash behavior

→ For different local properties in monolithic parts

Lightweight Design & innovative Steels

Highstrength grades

R&D activities at ThyssenKrupp Steel Europe

- Today's steel grade portfolio
- Future developments

Hot stamping

- New Boron steels with higher strength (MBW[®] 1900) or higher elongation
- Optimized processes & technologies
- GammaProtect[®]: cathodic corrosion protection for direct hot stamping

Sandwich materials

- LITECOR®
- Massive weight saving at extremely attractive lightweight costs
- · Innovative material for automotive lightweight design

Life cycle assessment

- Evaluation of the environmental impacts throughout the product life cycle
- Extraction material manufacturing use phase recycling

Stiffness Optimized Sandwich Material

Product overview

- Alternative Lightweight design solution to Aluminum
- Very thin outer panels
- Polymer core made of PE/PA-Compound
- Core layer / cover sheet composite with high shear stiffness
- Very high bending stiffness
- Structure borne noise damping properties existing (Potential to reduce secondary acoustic damping and insulation material)

Outer panel parts
Inner panel parts

Steel sheet (0,20 - 0,30 mm)Polymer core (PE/PA-Compound) $(t_k = 0,4 \dots 1,0 \text{ mm})$ Steel sheet (0,20 - 0,30 mm)

Lightweight design potential – e.g.: Doo

→ Goal: at least 30% cost benefit compared to an Aluminum application, maximal 10% weight penalty compared to an Aluminum solution

Part production from Stiffness Optimized Sandwich Material

Test results - summary

Forming	✓
Stiffness	V
Dent resistance (Hailstorm), Snowload	V
Cold joining technologies	V
Thermical joining technologies	√under construction
Deformation before/after KTL-painting	V
Deformation at operating temperature (Dilatometric)	V
Dynamic	V
Corrosion	V
Acoustic	/ under construction
Crash	✓

Stiffness Optimized Sandwich Material

Taking Off with Pilot Plant 09/2011

Schematic illustration: Pilot plant for stiffness optimized sandwich material

- Plant Capacity: ca. 2.500t Lightweight Sandwich per year
- Dimensions: (0.7 1.5mm) x max. 1600mm width*
- Low volume series from 12/2011
- High volume series (capacity of 40.000t/a) planned from 2nd half of 2014
- * Depending on availability of steel layer

Lightweight Design & innovative Steels

Highstrength grades

R&D activities at ThyssenKrupp Steel Europe

- Today's steel grade portfolio
- Future developments

Hot stamping

- New Boron steels with higher strength (MBW[®] 1900) or higher elongation
- Optimized processes & technologies
- GammaProtect[®]: cathodic corrosion protection for direct hot stamping

Sandwich materials

- LITECOR[®]
- Massive weight saving at extremely attractive lightweight costs
- · Innovative material for automotive lightweight design

Life cycle assessment

- Evaluation of the environmental impacts throughout the product life cycle
- Extraction material manufacturing use phase recycling

Life Cycle Assessment

What is Life Cycle Assessment?

Raw material

Casting Energy Information

Information

Manufacturing

Energy

F. Luftwiderstand. FRO Rollwiderstand, F_{ST} Steigungswiderstand,

Schwerpunkt,

Gewichtskraft.

Steigungs-/Gefällwinkel.

Sources: Internet

Evaluation of the environmental impacts of a product throughout its life cycle

Benefits of LCA

Greenhouse gases (GHG) in tons CO₂-equivalent

- GHG emissions over the life cycle phases of a product
- Shift of environment burden from one phase to another can be recognized
- It promotes objective evaluation of a product's environmental performance

→Our LCA analysis is based on the certified phase 1 model of Dr. Roland Geyer University of California, Santa Barbara

Comparative LCA for BiW Materials

Scenario SE-AG

→ With plausible assumptions, same level of GHG emissions over the lifecycle

Technologies to reduce Fuel Consumption

Lightweight Design **Automatic Transmission** 10% with reduced friction and 8 gears 6% Use of lost heat 30% Downsizing Optimization of the Engine direct fuel injection 30% Tyres: Reduction of 15% the Rolling resistance 5% Cylinder Lean deactivation combustion Reduced friction 20% 10% turbo charger 6% Source: Wirtschaftswoche

Ökologischer Leichtbau in Stahl, Hannovermesse Werkstoff-Forum 25.04.2012 Oliver Hoffmann

Conclusion

- Based on the currently available steels and in light of future developments there
 is a high potential for an innovative lightweight design
- For the design of BIW, hot-stamping technologies become more important
- Steel-plastics-composites such as LITECOR® provide additional solutions for lightweight design
- The Life Cycle Assessment assures sustainable lightweight solutions

