

"Integral energy optimization using **TÜV SÜD Energy and Media Efficiency** Standard (EME) - Machine and Plants Certificate"

Dr. Maria Dolores Alonso Craus

TÜV SÜD Industrie Service, Energiesysteme

TÜV SÜD Industrie Service, your partner

We can assist you in these areas

Civil engineering

Materials technology

Electrical and building services engineering

Environmental technology

Machine and plants engineering

Steam and pressure engineering

Energy and Technology

Regenerative Energies and Energy efficiency

20-20-20 Goals

20 % CO₂-Emission

20% Implementation renewable energies

20 % Improvement of energy efficiency

TÜV SÜD-Approach

TÜV SÜD Standard EME (Energy and Media-Efficiency)

EME = Energy and Media Efficiency

- Independent Energy and Media assessments
- Identification of energy saving potentials
- Complementary methodologies:
 - Consulting: a win for the company.
 - Certification: a win for the product or procedure and an assurance for the clients.

TÜV SÜD-Approach: Consulting

TÜV SÜD Standard EME (Energy and Media-Efficiency)- Consulting

An integral energy optimization applying TÜV SÜD EME-Standard EME = Energy and Media Efficiency

- ► Finding integral and holistic efficiency potentials
- ► Includes the whole production: Manufacturing technology, building services technology and building envelope
- ► Provides rational cost-effective optimisation potential

TÜV SÜD-Approach: Certification

TÜV

TÜV SÜD Standard EME (Energy and Media Efficiency)- Certification

TÜV SÜD EME-Octagon

- A voluntary certification mark issued by the TÜV SÜD Group
- A decision making aid for consumers
- A mark of confidence in the quality of a product or the service quality of an organisation
- An opportunity for our customers to emphasise individual product features

EME: Machine and Plants
Certificate

TÜV SÜD Standard EME (Energy and Media Efficiency)

EME: Machine and Plants Certificate

What EME is...

- a TÜV SÜD developed procedure to analyse plants and machines
- Standard of evaluation: Best available technique (BAT)
- Applicable to complex plants and machines and their interactions, it is not a classification
- Evaluation of the energy and media efficiency using soundly engineering science knowledge
- Systematic and total identification from the energy saving and energy efficiency potentials
- Development of rational and cost-effective optimisation strategies

Where EME helps...

- a standard procedure, that takes in account cross-system structures
- Compliance with European and local norms and laws for the specific industrial branch
- Comparison with lead companies in terms of comprehensive branch intern Benchmarking
- Identification of best available technology for the particular Industry in close collaboration with the clients

Baseline Study

Energy Audit

Energy Saving Potential

Structuring

Werkstück Maschine 1 Abyarme Abgas Abyarme
Werkstück Maschine 1 Maschine 2 Maschine 3 Werkstück
Kühlschmierstoff Verteilung
Erzeugung

On-site Workshops

> Energy flows

Components

Systems

- 80:20 Analysis
- Identification of Quick Wins
- Pinch-Point Analysis
- Quantification
- Feasibility
- Priorisation
- ROI-Estimation

The analysis will be carried on on-site, working together with the machine operators and experts at the client

TÜV

Structuring

- Machines
- 2. Energy flux (all media)
- Cooling lubricant- plants
- 4. Compressed-air systems
- Motors
- 6. System level (interacctions)
- 7. Heating, ventilation and air conditioning
- 8. Power supply

Tasks:

Structuring and modeling of the system according to

- Logical units
- Organisation structures
- Material und Media flows
- Energy flows

Results:

- Agreed process units
- Definition of principle mass- and energy flows
- Agreed boundaries

On-site workshops

- Definition of workgroups
- Participation of all relevant stakeholders, i.e machine designers, machine operators, machine services, maintenance, etc.
- On-site inspection of representative machines / facilities

Results:

- Identification and quantification of main loads
- Discussion of possibilities to use heat recovery, etc.
- Identification of Best Available Technology

TÜV

Energy saving potentials

Tasks:

Calculation and evaluation using

- Extrapolation from partial or total measurements
- TÜV SÜD control measurement

Results:

- Energy balances for defined systems
- Sankey-Diagrams with itemized energyconsumptions [MWh/a] for each process unit for electricity, heat, gas or other forms of energy

Analysis – Example of evaluation at the individual components

Electric gear

Are all of the following criteria for the electric gear fullfilled?	3.5
Documentation:	
Evaluated: Ye	es/No/n.a.
All significant motors (>500W) which are not in continuous use can be used for energy recovery?	
In case of machine halt or breakdown, will the gear be automatically stopped?	
Will the moving mass be minimised (above all in case of "Stop and Go" operation)?	
Are the losses by friction minimised?	
Are all electrical gears controlled?	
Comments:	
Defective / Potential for improvement:	
Evaluation:	1 2 3

Prerequisites for certification

- Informative documentation
- Maturity of energy efficiency
- Pronounced energy awareness of the staff involved
- Installations and systems as modern and efficient as possible
- Energy-efficient technologies

Benefits of certification

- Expert and impartial assessment by a recognized certification body
- Standing out from competition
- Transparency and trust for clients

TÜV SÜD Standard EME (Energy and Media Efficiency)- Certification

The TÜV-SÜD Octagon stands for:

- Performance and Durability
- Quality and Safety
- Energy efficiency

EME: Procedure Certificate

Machine and Plants
Certificate

Vielen Dank für Ihre Aufmerksamkeit! / Thanks for your attention!

Für weitere Fragen stehen wir Ihnen gerne zur Verfügung / We are available to answer all your fürther questions:

TÜV SÜD Industrie Service GmbH Region Nordost Plant Engineering / Energy Systems Drescherhäuser 5d 01159 Dresden

Dr. Maria D. Alonso

Tel.: +49 (0)351 4202-272

E-Mail: maria.alonso@tuev-sued.de

Steffen Kügler

Tel.: +49 (0)351 4202-328

E-Mail: steffen.kügler@tuev-sued.de

Halle 13 C 48