Workpiece shape deviations in face milling of workpiece compounds

14th Materials Forum, Hannover Messe

Prof. Dr. B. Denkena, E. Hasselberg

Hannover, April 10th, 2014
Production engineering at Leibniz University Hannover

university associated research centers:

Laser Zentrum Hannover e.V.

Institut für integrierte Produktion gGmbH
Infrastructure of Hannover Center for Production Technology

employees
- ca. 250 research assistants
- ca. 110 technicians and administrations
- ca. 520 student assistants
- ca. 1000 students

machines and appliances
- high-quality machine tools and installations
- latest measuring equipments, SEM, laboratories
- cleanroom (350 sq. m., class 100)
- total value ca. 50 million €

building
- ca. 22.000 sq. m. effective surface for office buildings, proving grounds, lecture and seminar rooms, library, cafeteria etc.
<table>
<thead>
<tr>
<th>Research areas at IFW</th>
</tr>
</thead>
<tbody>
<tr>
<td>manufacturing processes</td>
</tr>
<tr>
<td>Dr.-Ing. Jens Köhler</td>
</tr>
<tr>
<td>cutting processes</td>
</tr>
<tr>
<td>abrasive processes</td>
</tr>
</tbody>
</table>
Agenda

Introduction

Shape deviations

Material height deviation

Transition deviation at material joint

Surface roughness deviation

Surface defects

Conclusions
Application

cylinder crankcase - top surface

Aston Martin Vantage
4,3 l - V8 - 385 hp

[source: KS Kolbenschmidt Pierburg]

cylinder crankcase - crankshaft bore

Audi A8 - 4,2 l - V8 - 301 hp

[source: Hackerodt-Unternehmensgruppe]

cylinder crankcase - bedplate

BMW M5/M6 - 5,0 l - V10 - 507 hp

[source: Rautenbach AG]

Hb/61716 © IFW
Process strategy

- **drilling**
- **turning**
- **milling**

sequential
- Material 1
- Material 2

parallel (alternating)
Experimental Setup

machine tool: 4-axis machining center Heller H5000
face mill: 32 mm diameter, 4 indexable inserts, coated cemented carbide
workpiece fixation: screws and alignment pins
process: dry machining, material ratio: 50:50

machining direction: from low strength into high strength material

<table>
<thead>
<tr>
<th>Material</th>
<th>AW2030</th>
<th>GJS600</th>
<th>Obomodulan®1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>density [g/cm³]</td>
<td>2.85</td>
<td>7.2</td>
<td>1.2</td>
</tr>
<tr>
<td>hardness [HBW]</td>
<td>110</td>
<td>212</td>
<td>84 Shore-D</td>
</tr>
<tr>
<td>tensile strength [MPa]</td>
<td>410</td>
<td>749</td>
<td>94 (compressive strength)</td>
</tr>
<tr>
<td>Young's modulus [GPa]</td>
<td>75</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>thermal expansion coefficient [10^{-6} K⁻¹]</td>
<td>23.0</td>
<td>12.5</td>
<td>76.0</td>
</tr>
<tr>
<td>thermal conductivity [W/mK]</td>
<td>130-160</td>
<td>39</td>
<td>< 1</td>
</tr>
</tbody>
</table>
Agenda

- Introduction
- Shape deviations
 - Material height deviation
 - Transition deviation at material joint
 - Surface roughness deviation
 - Surface defects
- Conclusions
Material height deviation

![Material height deviation diagram]

Compliance of cutting tool & workpiece

- Tool-diameter: \(d = 32 \text{ mm} \)
- No. of teeth: \(z = 1 \)
- Cutting inserts: coated carbide
- Cooling: none

Machining setup & process forces

- Cutting speed: \(v_c = 200 \text{ m/min} \)
- Feed per tooth: \(f_z = 0.1 \text{ mm} \)
- Axial depth of cut: \(a_p = 1.0 \text{ mm} \)
- Width of cut: \(a_e = 32 \text{ mm} \)
Material height deviation

![Graph showing process forces F against rotation angle ψ for AW2030 and GJS600.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AW2030</th>
<th>GJS600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool diameter</td>
<td>d = 32 mm</td>
<td></td>
</tr>
<tr>
<td>Number of teeth</td>
<td>z = 1</td>
<td></td>
</tr>
<tr>
<td>Cutting speed</td>
<td>v_c = 200 m/min</td>
<td></td>
</tr>
<tr>
<td>Feed per tooth</td>
<td>f_z = 0.1 mm</td>
<td></td>
</tr>
<tr>
<td>Axial depth of cut</td>
<td>a_p = 1.0 mm</td>
<td></td>
</tr>
<tr>
<td>Radial depth of cut</td>
<td>a_e = 32 mm</td>
<td></td>
</tr>
</tbody>
</table>

- **AW2030**:
 - K_{rc} = 486 N/mm²
 - K_{tc} = -1021 N/mm²
 - K_{ac} = 282 N/mm²
 - K_{re} = 10 N/mm
 - K_{te} = -11 N/mm
 - K_{ae} = 23 N/mm

- **GJS600**:
 - K_{rc} = 632 N/mm²
 - K_{tc} = -1487 N/mm²
 - K_{ac} = 250 N/mm²
 - K_{re} = 118 N/mm
 - K_{te} = -123 N/mm
 - K_{ae} = 160 N/mm

© IFW 2014
Transition deviation at material joint

polyurethane Obomodulan®1400

V_f

v_c

cast iron GJS 600

measured surface: 30 mm x 3 mm

profile in cutting direction X_c

height profile z

µm

0

-3

-6

19

25

38

mm

Ob®1400

GJS600

height difference

vibration

equation of motion:
m ẍ = -c ẍ - k x + F(t)

τ_d = \frac{2\pi}{\omega_d}

ξ = \frac{1}{4} \ln \frac{x_1}{x_4}

tool-diameter: d = 32 mm

no. of teeth: z = 1

cutting inserts: coated carbide

cooling: none

cutting speed: v_c = 200 m/min

feed per tooth: f_z = 0.1 mm

axial depth of cut: a_p = 1.0 mm

width of cut: a_e = 32 mm

m: mass

k: spring constant

c: damping constant

F(t): external force

Hb/68933 © IFW
Transition deviation at material joint

2D orthogonal cutting process (FE-simulation)

- tool substrate: cemented carbide
- tool coating: TiCN + Al₂O₃
- cooling: none

- cutting speed: \(v_c = 400 \text{ m/min} \)
- undeformed chip thickness: \(b = 0.07 \text{ mm} \)
- width of undeformed chip: \(h = 1.0 \text{ mm} \)

Hb/68934 © IFW
Surface roughness deviation

Influence of the chip formation on the workpiece surface

- Material 1
 - Ideal profile
 - Real profile
 - Feed per tooth f_z

- Material 2
 - Ideal profile
 - Real profile
 - Feed per tooth f_z
Surface roughness deviation

Graph:

- **x-axis:** Width of cut \(a_e\)
- **y-axis:** Average surface roughness \(R_z\)
- **Lines:**
 - AW2030 - GJS600
 - GJS600

Key Values:

- \(R_{z,GJS} \text{ max} = 2.4 \ \mu m\)
- \(R_{z,Al} \text{ max} = 3.3 \ \mu m\)
- \(R_{z,Al-GJS} \text{ max} = 4.2 \ \mu m\)
- \(R_{z,GJS-Al} \text{ max} = 5.4 \ \mu m\)

Specifications:

- Tool diameter: \(d = 32 \ \text{mm}\)
- Number of teeth: \(z = 1\)
- Cutting inserts: Coated carbide
- Cooling: None
- Cutting speed: \(v_c = 200 \ \text{m/min}\)
- Feed per tooth: \(f_z = 0.1 \ \text{mm}\)
- Axial depth of cut: \(a_p = 1.0 \ \text{mm}\)
- Width of cut: \(a_e = 32 \ \text{mm}\)
Surface defects

GJS 600 „high strength“

Obomodulan® 1400 „low strength“

scratch depth: 20 µm

Surface defects (scratches) ➤ transport of chips and fractures from one material into the other

tool-diameter: \(d = 32 \text{ mm} \)

no. of teeth: \(z = 1 \)

cutting inserts: coated carbide

cooling: none

cutting speed: \(v_c = 200 \text{ m/min} \)

feed per tooth: \(f_z = 0.1 \text{ mm} \)

axial depth of cut: \(a_p = 1.0 \text{ mm} \)

width of cut: \(a_e = 32 \text{ mm} \)
Agenda

Introduction

Shape deviations

- Material height deviation
- Transition deviation at material joint
- Surface roughness deviation
- Surface defects

Conclusions
Conclusions

Four significant shape deviations occur in machining of parallel workpiece compounds mainly influenced by:

- **Material height deviation**
 - -> compliance of cutting tool and workpiece
 - -> process forces

- **Transition deviation at material joint**
 - -> process dynamics
 - -> machining direction

- **Surface roughness deviation**
 - -> material specific chip formation mechanisms
 - -> cutting tool kinematics

- **Surface defects (scratches)**
 - -> transport of chips and fractures from one material into the other

Outlook: generation of a comprehensive model
Acknowledgements

This research is supported by the German Research Foundation (DFG) within the project:

Modellierung des Stirnplanfräsprozesses von parallel angeordneten Werkstoffverbunden (DE 447/113-1)

Modeling of the face milling process of parallel arranged workpiece compounds (DE 447/113-1)
If you have any questions to the presented or further topics do not hesitate to contact us.

Contact details

Prof. Dr.-Ing. Berend Denkena
tel. +49 511 762-2533
info@ifw.uni-hannover.de

Dipl.-Ing. Eike Hasselberg
tel. +49 511 762-18074
hasselberg@ifw.uni-hannover.de

Entrance of the Hannover Centre for Production Technology (PZH) with buildings of the IFW

Institute of Production Engineering and Machine Tools (IFW)
Centre for Production Technology, Leibniz Universität Hannover
An der Universität 2
30823 Garbsen
Germany
www.ifw.uni-hannover.de