Leichtbau mit Carbonfasern

Material Solutions for Advanced Lightweight Design

Dr. Steffen Janetzko | Hannover Messe | April 16th, 2015
Company Profile
SGL Group

- One of the world’s largest manufacturers of carbon-based products
- Comprehensive portfolio ranging from carbon and graphite products to carbon fibers and composites
- 42 production sites worldwide
- Service network covering more than 100 countries

- Sales of ~€ 1.3 bn in 2014
- Head office in Wiesbaden/Germany
- ~ 6,300 employees worldwide
- Listed on German Stock Exchange
Our core markets and industries

- Coarse grain graphite
 - Iron and steel
 - Aluminum

- Fine grain graphite and natural graphite
 - Semiconductor
 - High temperature technology
 - Mechanical engineering
 - Automotive
 - Chemicals
 - Solar

- Carbon fibers and composites materials
 - Automotive
 - Aviation
 - Energy
 - Environmental technology
 - Sports
Technology & Innovation
Focus on three areas of research and support platforms

<table>
<thead>
<tr>
<th>Synthetic graphite</th>
<th>Energy systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite electrodes</td>
<td>Materials for:</td>
</tr>
<tr>
<td>Furnace linings</td>
<td>Lithium-Ion Batteries</td>
</tr>
<tr>
<td>Cathodes</td>
<td>Redox-Flow Batteries</td>
</tr>
<tr>
<td>Graphite specialties</td>
<td>Fuel cells</td>
</tr>
<tr>
<td></td>
<td>Thermal Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon fibers & composite materials</th>
<th>Support Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor</td>
<td>Raw materials platform</td>
</tr>
<tr>
<td>Carbon fibers</td>
<td>Process platform</td>
</tr>
<tr>
<td>Duroplasts and thermoplasts</td>
<td>New Business Development</td>
</tr>
<tr>
<td></td>
<td>Group IP</td>
</tr>
</tbody>
</table>
Growth opportunities

Global megatrends

<table>
<thead>
<tr>
<th>Traditional carbon markets</th>
<th>New carbon markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth</td>
<td>Energy</td>
</tr>
<tr>
<td>Urbanization</td>
<td>Renewables</td>
</tr>
<tr>
<td>GDP growth - CAGR -</td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>(2012 - 2035)</td>
<td>Energy storage</td>
</tr>
<tr>
<td>+3.5%</td>
<td></td>
</tr>
<tr>
<td>World Population</td>
<td></td>
</tr>
<tr>
<td>+38%</td>
<td></td>
</tr>
<tr>
<td>Energy Consumption</td>
<td></td>
</tr>
<tr>
<td>+41%</td>
<td></td>
</tr>
<tr>
<td>CO₂ Emissions</td>
<td></td>
</tr>
<tr>
<td>+29%</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Ind. - CAGR -</td>
<td></td>
</tr>
<tr>
<td>+4.7%</td>
<td></td>
</tr>
</tbody>
</table>

Sources: BP 2014 – Energy Outlook; United Nations, International Energy Agency (IEA), Semiconductor Industry Association (SIA)
Lightweight Solutions
Key for achieving global CO₂ emissions targets

National and global regulations for selected segments

Automotive - EU fleet targets
- Actual: ~ 130g CO₂/km
- Target: ~ 95g CO₂/km
- ~ 27%

Aerospace - CleanSky
- Actual: ~ 622Mt CO₂
- Target: ~ 310Mt CO₂
- ~ 50%

Railway - Deutsche Bahn
- Actual: ~ 7Mt CO₂
- Target: ~ 6Mt CO₂
- ~ 14%

Maritime - Int. Maritime Organization
- Actual: ~ 865Mt CO₂
- Target: ~ 714Mt CO₂
- ~ 17%

Sources: AllianzProSchiene, DB AG, Reinf. Plastics Mag. 07/08-12; CleanSky, GBI Research; EU CAFE; IMO
Solid future growth
Carbon Fiber Demand by Application

Annual Carbon Fiber Demand – all tow sizes [000t]

- CAGR -

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td>24%</td>
<td>8%</td>
</tr>
<tr>
<td>Sports</td>
<td>10%</td>
<td>2%</td>
</tr>
<tr>
<td>Industrial</td>
<td>12%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Sources: SGL Group, Oct 2014
Carbon Fibers / Composite Materials

SGL Group only integrated European carbon fiber producer

Carbon Fibers & Composite Materials

- **PAN Precursor**
 - **Fisipe** (100%)
 - **MSP**: JV with Mitsubishi Rayon (33%)

- **Carbon Fiber**
 - **Prod. Capacity**
 - ~4kt in UK
 - ~2kt in USA
 - **SGL-ACF**: JV with BMW (51%)
 - ~3kt in USA

- **Composite Materials**

Composite Components*

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Carbon Fiber</th>
<th>Prepreg Preform</th>
<th>Automotive & other industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benteler SGL (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brembo SGL Carbon Ceramic Brakes (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Former Business Unit Rotor Blades sold as of December 31, 2013
** Business Unit Aerostructures reclassified to discontinued operations as of June 30, 2014
*** Tripling of capacity to 9kt announced on May 9, 2014
Lightweight Carbon Composite Materials as Enabler for E-Mobility

Weight Reduction Potential for Car Body

CFRP* Car Body compensates battery weight

<table>
<thead>
<tr>
<th>Materials</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>1.0</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.6</td>
</tr>
<tr>
<td>CFRP*</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- **CFRP* Car Body**: 40% lighter than steel
- **Steel**: 60% lighter than Aluminum

Examples
- **BMW 1er**: 1.280kg
- **BMW i3**: 1.250kg

* Carbon Fiber Reinforced Polymers
Carbon Fiber Reinforced Polymers (CFRP)

Material Systems with superior properties

Main characteristics of CFRP

- Low weight
- High strength and break resistance
- Good rigidity
- Corrosion resistance
- Vibration resistance
- Low thermal expansion
- Freedom of design

Applications for various Industries

- Automotive
- Aviation
- Energy
- Civil & Mechanical Engineering
- Sports
- Medical Technology
- Robotics & Automation
Aerospace
History of Lightweight Design & CFRP Materials

Share of CFRP in Primary Structure [in %]

- Boeing 767
- Boeing 777
- Boeing 787
- Airbus A320
- Airbus A330/340
- Airbus A380
- Airbus A350

Composite intensive A350
- >50% of the primary structure weight in CFRP
- Process characteristics
 - Long cycle times
 - Small serial
 - Higher quality standard

Sources: BofA Merrill Lynch, Airbus
Automotive History of Lightweight Design

Empty weight development of vehicles 1970-2020 [in kg]

Sources: VW, Opel, Ford

Models / Vehicles
- Golf (I-VII)
- Kadett / Astra
- Escort / Focus

Page 12 | Dr. Steffen Janetzko, Hannover Messe 2015
Automotive
History of CFRP Materials

Sources:
Source: RedBull F1, Daimler AG, Audi AG, BMW AG
Lightweight Design for E-Mobility
BMW i3/i8 – A benchmark for CFRP in Automotive

- Overall concepts **dedicated to** electro mobility
- Structural design **aligned with** composite requirements
- **Large scale production** of Carbon fibers and Composites
SGL Automotive Carbon Fibers
Global supply chain

1. Precursor
 - Japan -

2. Carbon Fiber Production
 - USA -

3. Textiles and Recycling
 - Germany -

4. Composite Components
 - Germany -

5. BMW i3/ i8 Production
 - Germany -

1 | Otake
2 | Moses Lake
3 | Wackersdorf
4 | Landshut
5 | Leipzig

- Mitsubishi Rayon-SGL Precursor
- SGL Automotive Carbon Fibers
- BMW Group
SGL Automotive Carbon Fibers
Production Sites

Moses Lake / USA

Selection Criteria

- **100 % Green Energy:**
 - Hydro-electric power station nearby

- **Low Energy Costs:**
 - Approx. 0,03USD/kwh at Moses Lake

Wackersdorf / Germany

Key facts

- **Production:** 6000 t/p.a. of carbon fiber fabrics

- **Recycling:** Recycling of cutting trims

- **Sustainability:** Site runs on renewable energy

- **Employment:** 500 employees
Current status of Lightweight Design by CFRP
Aerospace & Automotive

- Material and automation concepts in aerospace address **small lot-sizes** with **high performance**
- Textile & infusion based manufacturing technologies have **an upper lot-size limit**

Aerospace
Serial Production ≈ **100 units / p.a**

Automotive
Serial Production ≈ **10,000 units / p.a**

- Low **material utilization** of carbon fabrics
- High **process costs** due to thermoset materials
 - Infusion and polymerization time
 - Autoclave curing of epoxy prepregs
- Manufacturing equipment **efficiency too low**
Current challenges for CFRP materials
Automated manufacturing technologies

Requirements

<table>
<thead>
<tr>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ High technical availability</td>
</tr>
<tr>
<td>▪ High overall equipment efficiency (OEE)</td>
</tr>
<tr>
<td>▪ Integrated quality management systems</td>
</tr>
</tbody>
</table>

Challenges

Manufacturing Concepts

- **Aerospace**
 - Barrel Production
 - Boeing

- **Automotive**
 - i3 Production Leipzig
 - BMW Group

Transfer of Automation Concepts is NOT feasible
Current challenges for CFRP materials
Disposal & Recycling

Requirements

<table>
<thead>
<tr>
<th>CFRP Recycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Consistent scrap availability</td>
</tr>
<tr>
<td>• Appropriate size reduction technologies for the CFRP waste</td>
</tr>
<tr>
<td>• Established process parameters</td>
</tr>
<tr>
<td>• Infrastructure for secondary operations</td>
</tr>
</tbody>
</table>

Challenges

<table>
<thead>
<tr>
<th>Reclaim CFRP Scrap / Wastage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chopped</td>
</tr>
</tbody>
</table>

Recycled CFRP are perceived to be “secondary” with lower quality
Current challenges for CFRP materials
Multi-material Design Concepts

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRP Potential Analysis</td>
<td>Multi-material Design Concepts</td>
</tr>
<tr>
<td>- Load path</td>
<td>- Joining concepts</td>
</tr>
<tr>
<td>- Design room</td>
<td>- Thermal expansion</td>
</tr>
<tr>
<td>- Location of the component</td>
<td>- Assembly line integration</td>
</tr>
</tbody>
</table>

Analysis of the body in order to identify components with high CFRP potential

- B-pillar: CFRP Insert for increased impact stability

Source: Audi AG

Dr. Steffen Janetzko, Hannover Messe 2015
Thermoplastic Materials
Enabler for High Volume Production?

- Short Cycle Times
- Recycling
- Repair Concepts
- Hybrid Materials
- Welding
- Transport and Storage at Room Temp.

Source: BMBF Project SpriForm, SGL Group
SGL’s innovation approach for a growth in CFRP

Three pillars for a sustainable development

<table>
<thead>
<tr>
<th>Facilitate Education</th>
<th>Joint Developments</th>
<th>Industrial Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for Carbon Composites (LCC)</td>
<td>Leading Edge Cluster M-A-I Carbon</td>
<td>Carbon Composites e.V.</td>
</tr>
</tbody>
</table>
| ▪ Endowed chair at TU Munich
 - R&D support and services
 - Joint projects
 - Education | ▪ Joint technology development targets
 - ↓ 90% process cost
 - ↓ 50% material cost
 - 60 - 80% value add in GER | ▪ The Carbon Composite Association
 - Joint projects
 - Networking platform
 - Marketing |
Carbon Fiber Reinforced Polymers
Industry Snapshot

CFRP materials still **represent a small niche**

i3/i8 production is **industrial pioneering** for the future of urban mobility

Transfer from **manual** production **to serial production**

Multi-material mix addresses major issues

Still major **challenges ahead**

Networks are requisite for future success
Thank you for your attention!
This presentation contains forward looking statements based on the information currently available to us and on our current projections and assumptions. By nature, forward looking statements are associated with known and unknown risks and uncertainties, as a consequence of which actual developments and results can deviate significantly from the assessment published in this presentation. Forward looking statements are not to be understood as guarantees. Rather, future developments and results depend on a number of factors; they entail various risks and unanticipated circumstances and are based on assumptions which may prove to be inaccurate. These risks and uncertainties include, for example, unforeseeable changes in political, economic, legal and business conditions, particularly relating to our main customer industries, such as electric steel production, to the competitive environment, to interest rate and exchange rate fluctuations, to technological developments, and to other risks and unanticipated circumstances. Other risks that may arise in our opinion include price developments, unexpected developments associated with acquisitions and subsidiaries, and unforeseen risks associated with ongoing cost savings programs. SGL Group assumes no responsibility in this regard and does not intend to adjust or otherwise update these forward looking statements.