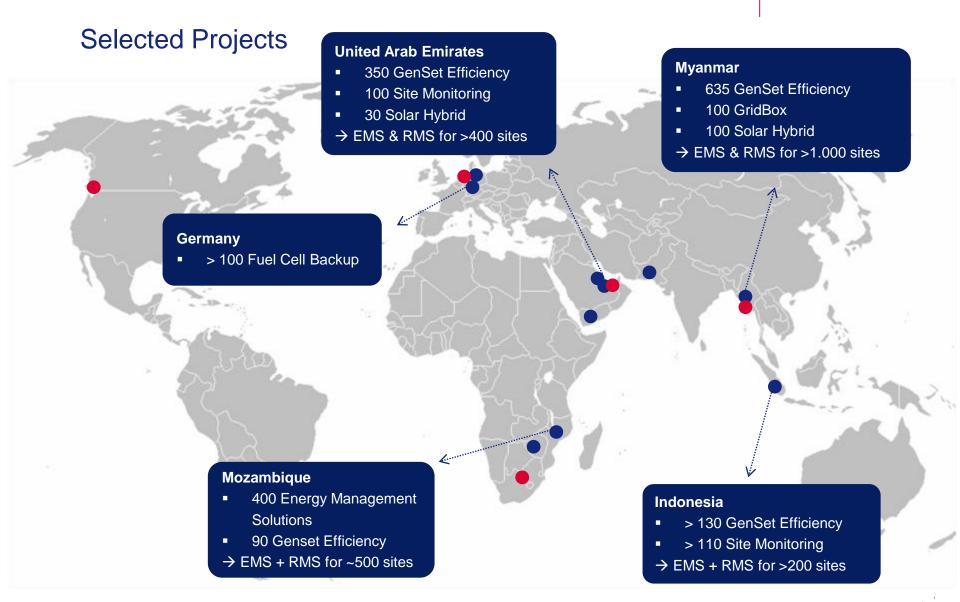

Heliocentris Fuel Cell Systems for critical infrastructures

CeBIT Security Forum, March 15th, 2016

Mark-Uwe Osswald (VP Fuel Cell & Electrolyzer Systems)

Heliocentris

PEM-Brennstoffzelle (Proton Exchange Membran)



History	1995: Company Foundation			
Products	 Energy Management Systems Turnkey Power Solutions Network Management Software Power Operations Services Fuel Cell & Electrolyzer Systems 			
Markets	> 50 countries			
Locations	Berlin (HQ), Munich, Stuttgart, Dubai, Vancouver, Johannesburg, Yangon			

Over 3,000 Managed Power & Monitoring Solutions

Heliocentris

www.heliocentris.com

Heliocentris

Good Grid

- Critical Infrastructure
- Extended Backup requirements

Unreliable Grid

- Varying & unpredictable load pattern
- Noise restrictions due to proximity to communities

Remote Off-Grid

- Extremely remote sites
- Difficult site access

Emergency Power

Complementary Power

Autonomous Power

5

10kWp Indoor Configuration

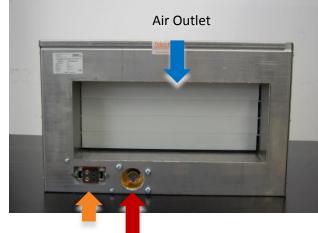
Designed for

- ✓ high reliability
- ✓ high flexibility
- ✓ very low standby costs

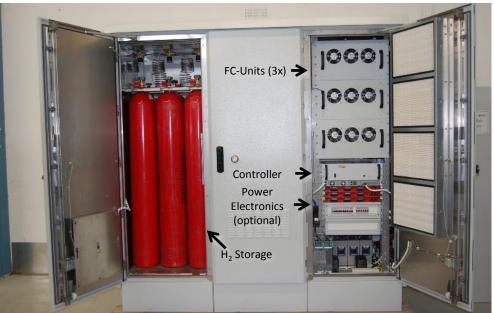
System key features

MODULAR	Rated power scalable in 2.5 kWp steps; Redundant layout of certain system components
FLEXIBLE	Configuration as online or offline UPS; Load modulation from 30 … 120 %
EFFICIENT	> 50 %
RELIABLE	Very simple system design, no consumables, no fuel degradation
QUIET	63 dBA (@ 1 m)
ROBUST	Operating range from -40 +50 °C
INTENANCE	1 site visit per year

6


Jupiter – Integrated Fuel Cell and Hydrogen System

Fuel Cell Module (FC) - Front side


Fuel Cell Module (FC) - Back side

Electrical connection and Communication Heliocentris Group

Hydrogen

Fuel Cell System (FCS) – Front side

e.g. 6kW @ 400 VAC Outdoor FCS incl. H₂ compartment

- > Easy installation, commissioning and service:
 - Space saving (19 and 23" units available)
 - Low unit weight (all units < 30 kg)</p>
 - Front handling
- Standardized interfaces
- Remote Monitoring and Control

Principle - H₂-storage in High-Pressure Tanks

Heliocentris

For Hydrogen the ideal gas equation with compression factor z(p) applies:

 $P^*V=(m/M)^*R^*T^*z(p)$

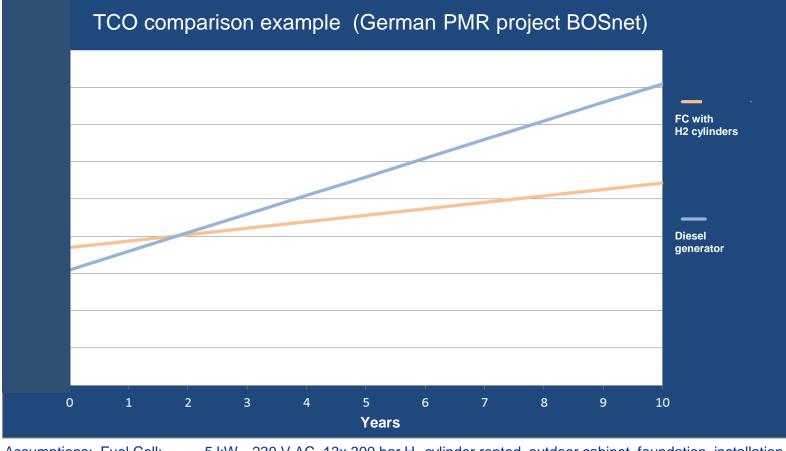
P [bar]	1	20	200	300
z(p)	1	1,02	1,132	1,201

Calculated with 33 kWh/kg for H₂:

([p]=bar; [V]=liter; [z]=1)

Energy content $W = (p^*V/T^*z(p))^*0.8 \text{ kWh}$

50 liter storage volume	bottle @ 200 bar	bundle @ 200 bar	bottle @ 300 bar	bundle @ 300 bar
Energy content gross	25,8 kWh	309,6 kWh	36,5 kWh	438 kWh
Energy content net (~ 50 η)	~ 12 kWh	~ 150 kWh	~ 18 kWh	~ 200 kWh
H ₂ -standard volume	8,6 Nm³	103,2 Nm ³	12,17 Nm ³	146,04 Nm ³
H ₂ -weight	0,77 kg	9,24 kg	1,1 kg	13,2 kg
Example for 4 kW: range of stored Hydrogen	3 h	37,5 h	4.7 h	50 h


Requirement	Jupiter Fuel Cell Backup Power		Diesel Backup Power		
Required autonomous runtime	✓	can be ensured by an appropriate number of hydrogen bottles		can be ensured by the appropriate tank size	
Uninterrupted refueling	~	Exchange or refilling of the pressurized H2 storage while operating is possible	✓	Refilling of the diesel tank while operating is possible	
Additional supply of maintenance resource	~	For disaster situations appropriate precautionary provisions are necessary and possible		For disaster situations appropriate precautionary provisions are necessary and possible	
Scalability of power	~	Well matched to the power required by modular cascading. High efficiency at partial and full load (> 50%).		Due to the torque characteristics they are usually oversized in power. Consequence: operating at partial load with low efficiency (<15%)	
230 / 400 V AC	\checkmark	Via integrated DC/AC converter		Via integrated synchronous generator	
Material safety	\checkmark	Outdoor-cabinet up to RC4 available		RC only possible with container assembly	
High availability	~	Intrinsic: in standby mode a FC hardly ages and H2 ages not at all. The system design is simple and therefore robust and low- maintenance		Diesel engine and fuel wear out on standby. High availability is only ensured by increased maintenance costs and monthly test run @ load.	
Customizability to special site circumstances	~	Due to the modular system concept several design versions are possible and the transport is easy.	×	The diesel generator is a large heavy block, therefore not easy to transport and inflexible.	

9

Jupiter Why H₂ Fuel Cell Backup [2]

Heliocentris

After already 2 years the total costs (TCO) of a Jupiter backup power supply is more attractive than a diesel-system!

Assumptions: Fuel Cell: 5 kW_P, 230 V AC, 13x 300 bar H₂ cylinder rented, outdoor cabinet, foundation, installation Diesel Genset: 12 kVA, 150 liter tank, foundation, installation, monthly test runs Prices as of 2014

References

Jupiter - Professional Mobile Radio (PMR)

Already more than 100 systems successfully in operation

APPLICATION

Backup for PMR "BOS Digitalfunktechnik"

SYSTEMS

"Jupiter" FC-Systems: 2-6 kW @ 230 VAC

HOUSING

Outdoor Cabinet (RC4) Outdoor Cabinet (RC2) Outdoor Cabinet (RC0) Container (RC3) Indoor:

LOCATIONS Germany (BOS)

INSTALLATION 2011 – 2015

12

Jupiter – Telecom network nodes

Heliocentris

APPLICATION

Backup power supply with peak-power shaving and minute reserve

SYSTEM

"Jupiter" FC-System: 14 / 28 kW @ -60 VDC

HOUSINGS Indoor, Outdoor and Container

LOCATIONS Germany / Czech Republic

INSTALLATION 2009 - 2011

Jupiter - Base Stations Off-Grid

Heliocentris

APPLICATION

Grid Independent Power supply (100% zero emissions)

SYSTEMS

Jupiter FC-System: 2/4 kW @ -48 VDC

ENCLOSURE

Container

LOCATION Versmold and Büren, Germany

INSTALLATION 2011 and 2012

Jupiter – IT Systems

Heliocentris

Landkreis Göppingen Herzlich willkommen im Stauferkreis

APPLICATION

Backup power supply for IT Center

SYSTEM

"Jupiter" FC-System: 20 kW @ 380 VAC

HOUSING

Container solution

LOCATION

Göppingen, Germany

INSTALLATION 2012

Jupiter – Traffic Control

Heliocentris

APPLICATION

Range extender for electrical energy storage for signal box

SYSTEM

"Jupiter" FC-System: 6 kW @ 60 VDC

HOUSING RC2 outdoor cabinet

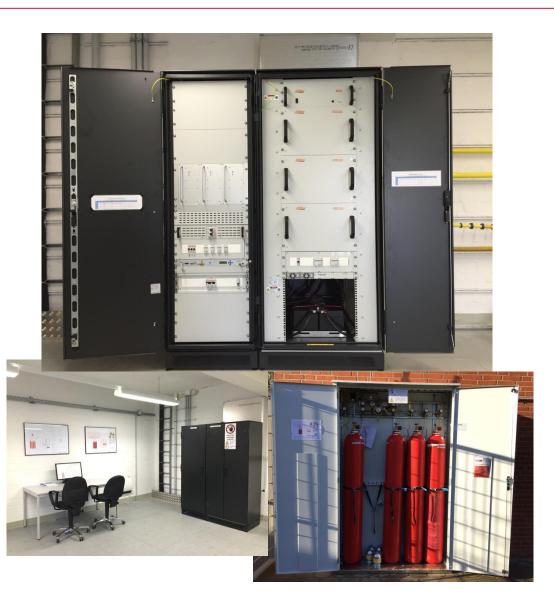
LOCATION Germany

INSTALLATION 2013

Jupiter – Radar

APPLICATION Backup power supply

SYSTEMS "Jupiter" FC-System: 6 kW @ 380 VAC


HOUSING Outdoor cabinet

LOCATION Germany

INSTALLATION 2013 and 2015

Jupiter – Power Distribution / Switching Stations

APPLICATION Backup power supply

SYSTEMS

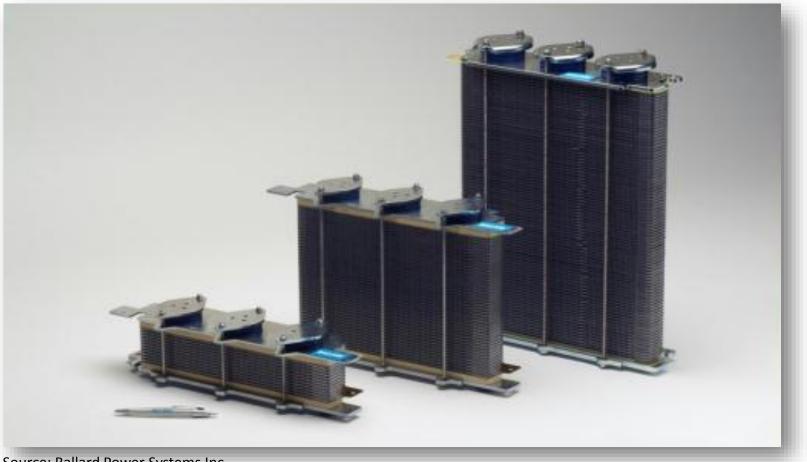
"Jupiter" FC-System: 6 kW @ 220 VDC

HOUSING

Indoor FC cabinet with outdoor H2 cabinet

LOCATION

Germany


INSTALLATION 2015

Thank You / Vielen Dank

Mark-Uwe Osswald VP Sales & Marketing Fuel Cell and Electrolyzer Systems <u>Mark-uwe.osswald@heliocentris.com</u> <u>www.heliocentris.com</u>

Source: Ballard Power Systems Inc.

Principle - H₂-storage in High-Pressure Tanks

Heliocentris

For Hydrogen the ideal gas equation with compression factor z(p) applies:

 $P^*V=(m/M)^*R^*T^*z(p)$

P [bar]	1	20	200	300
z(p)	1	1,02	1,132	1,201

Calculated with 33 kWh/kg for H₂:

([p]=bar; [V]=liter; [z]=1)

Energy content $W = (p^*V/T^*z(p))^*0.8 \text{ kWh}$

50 liter storage volume	bottle @ 200 bar	bundle @ 200 bar	bottle @ 300 bar	bundle @ 300 bar
Energy content gross	25,8 kWh	309,6 kWh	36,5 kWh	438 kWh
Energy content net (~ 50 η)	~ 12 kWh	~ 150 kWh	~ 18 kWh	~ 200 kWh
H ₂ -standard volume	8,6 Nm³	103,2 Nm ³	12,17 Nm ³	146,04 Nm ³
H ₂ -weight	0,77 kg	9,24 kg	1,1 kg	13,2 kg
Example for 4 kW: range of stored Hydrogen	3 h	37,5 h	4.7 h	50 h

Issues with battery bank and Diesel genset backup-systems

- Battery bank needs to be cooled with air con
- Battery has short life span (2-5 years)
- Disposal of lead acid battery is hazardous to the environment.
- Diesel gen-set needs regular maintenance to keep its availability (2-6 site visits/year)
- Diesel genset is noisy during operation
- Diesel genset has toxic emissions (particles, SOx, NOx)
- Weight and vibrations prevent many rooftop installations
- Genset and diesel fuel are often subjected to thefts

Potential achievements through fuel cell technology

- Replacement of backup diesel gensets
- Reduction of OPEX due to less site visits
- Reduction of CO2 emission
- Reduction of noise emission
- Installation at sites where genset is not possible/allowed
- Improve network availability
- Reduction of lead acid batteries banks
- Reduction of air-conditioning usage (due to smaller battery banks)

Heliocentris

Why do we need a reliable backup power supply (3/5)?

Hurricane "Kyrill" (on January 18th and 19th, 2007)

Kyrill in numbers:

- ➢ 47 persons died, 11 of them in Germany
- Damages amounting to approx. 3,5 billion Euro

- Wind velocities of up to 225 km/h (Europe-wide max. wind gust at 2850 m)
- Extensive power outages lasting more than 24 hours in all of Germany
- In the southern part of Brandenburg power outages lasted up to 48 hours