Lubricant Effects on White Etching Cracking Failures in Thrust Bearing Rig Tests

April 26, 2017

J. T. Carey¹, T. Haque¹, S. Korres¹, P. W. Jacobs¹, J. W. H. Franke², W. Holweger²

¹ExxonMobil Research & Engineering, Annandale/Paulsboro, New Jersey
²Schaeffler Technologies AG&Co. KG, Herzogenaurach, Germany

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1A of ExxonMobil’s latest report on Form 10-K or information set forth under “factors affecting future results” on the “investors” page of our website at www.exxonmobil.com). This material is not to be reproduced without the permission of Exxon Mobil Corporation.
White Etching Cracking (WEC) is a sub-surface bearing failure occurring under fatigue load

- Cracking occurs near grain boundaries
- "Root cause" is highly debated

Why is it a problem?

- Reported to cause ~60% of wind turbine high speed bearing failure
- Initial & intermediate extensive WEC fatigue damage all happens below surface without warning!
 - Once WEC damage erupts to surface - it's too late!
 - Most WEC damage causes complete component failure requiring extensive €/$ repair
Objectives

- This paper presents experimental results explaining the intersection of critical factors that cause WEC.
- A model on the mechanism of WEC failure will be proposed.

Unusual factors that combine causing WEC

Lubrication Regime
- Boundary/ Mixed Lubrication
- Load/ Loading Type
- Speed (Sliding/Rolling)
- Lubricant Viscosity
- Surface Roughness

Tribological Contact
- Hertzian Contact Stress
- % of Surface Exposed to Contact
- Additives Chemistry or Tribofilms
- Slip / Friction energy
- Decomposition of water/lubricant
- Electrical field / current flow

Subsurface
- Hydrogen (Embrittlement)
- Subsurface Stress
- Residual Stress
- Carbide, Austenite, Chrome, Vanadium
- Defects/ Dislocations

WEC
FE8 Results – Lubricant Variations

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Additive Pack (Metal/No Metals)</th>
<th>Viscosity (ISO 68/320)</th>
<th>API Base Oil Group I (min) / IV (syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEC</td>
<td>Bad</td>
<td>High</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>IV</td>
</tr>
<tr>
<td>No WEC</td>
<td>Good</td>
<td>High</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>IV</td>
</tr>
</tbody>
</table>

WEC failure mode of FE8 is affected by additive type
- No effect of Base Oil Type
- No effect of Lubricant Viscosity
 - Higher viscosity delays, but does not prevent WEC

Certain metal containing lubricant additives cause WEC
White Etching Cracking – Impact of Lubricant Components

FE8 test results with stepwise controlled assembly of poor performing WEC oil.

Test duration:

- **<120 hours**
 - Early Failure (WEC)
- **200 hours**
 - Late Failure (non-WEC)
- **624 hours**

<table>
<thead>
<tr>
<th>Result</th>
<th><120 hours</th>
<th>200 hours</th>
<th>624 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc DithioPhosphate</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Phosphate (Ashless)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Na sulfonate (High TBN)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ca sulfonate (High TBN)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- Ashless phosphates do not generate WEC
- Ca and Na sulfonates independently do not generate WEC

Zinc phosphate and/or the combination of overbased Ca & Na alkyl sulfonates cause **WEC**
MTM-SLIM Tests – Friction vs. Film Formation

MTM SLIM ‘Switching Oil’ Expt:
non-WEC Oil Followed by WEC Oil

MTM-SLIM 'Switching Oil' Expt:
WEC Oil Followed by non-WEC Oil

Tribofilms govern friction response →
Non-WEC Oil cannot remove the tribofilms formed by the WEC Oil
Impact of Film Formation on WEC – FE8 Switching Tests

FE8 Test

<table>
<thead>
<tr>
<th>Switching oil tests Single oil tests</th>
<th>Non-WEC Oil</th>
<th>624 hours</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEC Oil</td>
<td></td>
<td>110 hours</td>
<td>Fail</td>
</tr>
<tr>
<td>WEC 20 hours then Non-WEC Oil</td>
<td></td>
<td>94 hours</td>
<td>Fail</td>
</tr>
<tr>
<td>Non-WEC Oil 20 hours then WEC Oil</td>
<td></td>
<td>125 hours</td>
<td>Fail</td>
</tr>
</tbody>
</table>

- FE8 bearings tested for 20 hours with WEC Oil failed by WEC even after switching to a Non-WEC oil
- WEC initiates as short as 20 hours

A **Non-WEC oil cannot relieve the damage caused by a WEC Oil**
Crack initiation observed at a depth of 100 - 120 μm (shear maximum)

Friction intensifies subsurface stresses resulting in WEC

High friction induced stress alone cannot cause WEC

WEC can occur with increasing lubricant induced sub-surface stress

WEC Mechanism - Sub-surface Stress

Hertzian Contact

Load

Subsurface Stress

Contact Pressure

Sub-Surface Stress

WEC Failure at ~106 um Depth

100-120 μm

SEM Image

Initiation Sites

FE8 roller - test with WEC Oil stopped at 40hrs
WEC Mechanism – Hydrogen Ingress

- Rollers of the modified Four Ball Tester (FBT) were analyzed in Thermal Desorption Spectroscopy (TDS).
- Greater trapped hydrogen concentrations observed in WEC failed rollers versus rollers with no WEC.
- More hydrogen observed than can be explained by the presence of tribofilm.

TDS Results on FBT Rollers

High sub-surface H concentration correlates with WEC failure
Simulation confirms the highest concentration of hydrogen is just below the roller contact.
WEC Sub-surface Conditions

WEC initiates in regions of overlapping high H concentration and elevated shear stress

Overlap of stress and hydrogen conc. fields \rightarrow\ crack initiations

100-120 µm

> Critical Stress

> Critical H Concentration

Tribofilm

Hydrogen field

Stress field
Summary

- A Non-WEC oil can be formulated to avoid WEC
- A Non-WEC oil cannot remove the WEC forming tribofilm or mitigate sub-surface damage
- ZDDP and/or the combination of Ca & Na alkyl sulfonates contribute to formation of WEC-critical tribofilm which trap water
- Tribofilms can form and initiate WEC as short as 20 hours in the FE8 test
- Sub-surface dark spots in the maximum shear plane were found
- Harmful tribofilm can increase sub-surface stress (high friction) and enhance hydrogen diffusion below the contact allowing for WEC initiation
Thin Tribofilm: good oil – low water

Bearing

100-120 µm

- Tribofilm provides cushion
- Slight deformation
- Sub-surface Stress
Thick Tribofilm: WEC Oil

- Entrained Water
- Water breaks
- Hydrogen diffusion
- Initiation site
- Sub-surface Stress
- 100-120 µm

Tribofilm provides cushion

Slight deformation
We propose, water ingress as the source of hydrogen, trapped in the Tribofilm

- 50 x higher water content in WEC Oil
- WEC Oil has hygroscopic additives

WEC Oil was saturated with heavy water (D$_2$O); FE8 test was conducted; parts evaluated with TDS; Clear evidence of deuterium (D) found in FE8 roller

The only path for D to be here was the D$_2$O from WEC Oil
Thank You

Together We Move The World