Captain Kirk and Mr. Spock of predictive maintenance: Combining expert knowledge with advanced data analytics HMI 2017, MDA Forum Cassandra Prophet of critical future events in Greek mythology Copyright © 2017 by Cassantec AG Disclosure to a third party requires explicit, written permission of Cassantec AG Optimized maintenance & repair Improved production planning Retention of critical knowledge Enhanced reporting transparency Financial benefit levers ### CASSANTEC # Predictive Analytics generates early warnings – Prognostics delivers true foresight Know that something will happen at some point in the future Know the explicit time window until ## The technology is a unique and patent-pending combination of advanced mathematical methods # The efficient configuration process comprises a "Kirk-step" and a "Spock-step" **Prioritize Specify** Configure **Automate** Use & Discuss Data Malfunction Modes Solution **Data Transfer Forecasts** Specify/prioritize Specify Configure front Batch **Unit level:** malfunction Specification equipment end Consideration of modes ▶ Equipm. view Data sources Discuss forecasts in Definition condition data ▶ Unit view ▶ Data format Scheduling Detection ▶ Fleet view ▶ Time intervals ▶ Types Scoping Response Sources Customize Configuration Preparation Prioritize comput. model and tests ▶ Intervals of outages malfunction Discuss results Provide historical Consideration of modes condition data Specification forecasts in life Correlate & assumptions Specify cycle and retrofit condition ▶ Data time ▶ Hand-over decisions series parameters to Review Fleet level: malfunction Implications Consideration of for asset mgt. modes forecasts in Qualitative commercial Quantitative decisions Cassantec-Ongoing use 1/2 day onsite 2 days onsite 1 day IT internal ### The benefits of knowing "when" | Improvement lever | Application examples | |--|------------------------------------| | ➤ Reduce unscheduled maintenance / repair | ➤ "outage clusters" | | Shift maintenance into low-cost periods | ► Avoid costly over-time | | ➤ Shift maintenance into low-revenue periods | ► When electricity prices are low | | ► Reduced preventive scope and/or frequency | ➤ Postpone routine work | | ► Manage Remaining Useful Life | ► Adjustment of operational regime | ## Short-term maintenance: an impeding damage could be avoided without additional downtime #### **Prognostic Report for Cyclone Pump** #### **Decision:** Increase vigilance and observe development, given that the current condition is green #### Decision: - Change bearing assembly (26 Sep '15) - Change gearbox (3 Nov '15) and oil (11 Nov '15) ## Production planning: load scenarios for an optimized link between maintenance and production **Prognostic Report for Gearbox of Compressor** ### A run-of-river plant in Switzerland uses Prognostics #### Three components are covered #### **GEN3** limits the plant's Remaining Useful Life #### Trouble stems from the shaft #### Using Prognostics requires a double paradigm shift # The result is many use cases revolving around asset management (1 of 2) | Category | Use Cases | |--------------------------|--| | Maintenance and Repair | Long-term scheduling of maintenance Short-term preparation of reactive maintenance Maintenance staff planning and allocation | | Operations | Production planning according to the future availability profile Increased assets availability and minimized downtime risk for field projects, e.g. in upstream oil & gas | | Finance | Saved profit opportunities from downtime reduction Decreased annual maintenance costs Increased total expected benefits petroleum assets operators Optimized insurance policy and costs Planning budget(s) and total cost of ownership (TCO) | | Life Cycle
Management | Replacement and retrofit planning RUL-optimal exploitation Active management of the remaining useful life by adjusting operating capacity | # The result is many use cases revolving around asset management (2 of 2) | Category | Use Cases | |------------------------|---| | Risk Management | Operationalization of risk valuation standards Full transparency over future downtime risk for all critical assets components and active risk management | | Procurement | Optimized parts and service procurement | | General
Management | Operationalized management reporting standards Training of maintenance workforce and reliability through prognostic solution Benchmarking: recognizable risk-impact of different operations strategies trough displayed risk profiles Optimized health, safety & environment (HSE) reporting | | Product
Development | Original asset design and development of industrial assets Timely retrofit and/or replacement of sensors | #### **The Prognostics Company** #### **CASSANTEC** – The Prognostics Company Zurich, Switzerland Cassantec AG T: +41 44 445 2260 Berlin, Germany Cassantec GmbH T: +49 30 5900 833 00 Cleveland, U.S.A. Cassantec U.S. Office T: +1 216 220 4890 E: info@cassantec.com W: www.cassantec.com