

Content

- Company and Products
- Technology
- Scientific testing
- Examples of applications
- Sentient Science
- Conclusion

REWITEC®

COMPANY AND PRODUCTS

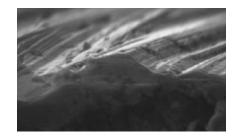
Establishment in 2003

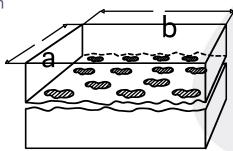
World wide sales

- Developer, manufacturer and distributor of nano and micro particle based surface refinements for protection and repair of tribologic systems (gears/ bearings)
- Founder and Managing Partner: Stefan Bill

Tribology, friction, wear

Tribology:


The science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear.

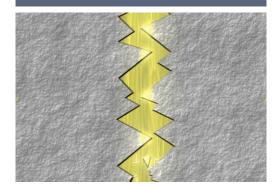

Friction:

"Outer friction", also known as Solid Body Friction, because it appears between contact surfaces of touching solid bodies. It is devided in static friction, sliding friction and rolling friction.

Wear:

Wear (abrasion) is the mass loss (surface erosion) of a material surface due to grinding, rolling, hitting, scraping, chemical or thermal load.

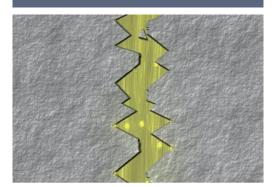
Products



The coating process

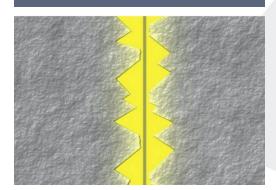
Step 1

Chemical-physical process


The product uses the lubricant as carrier to the mixed friction zone

Step 2

Chemical reaction


The coating particles ceramize the metal surfaces mixed friction zone

Step 3

New metal-ceramic surface

Original material properties will be improved in terms of friction, temperature and wear siginficantly

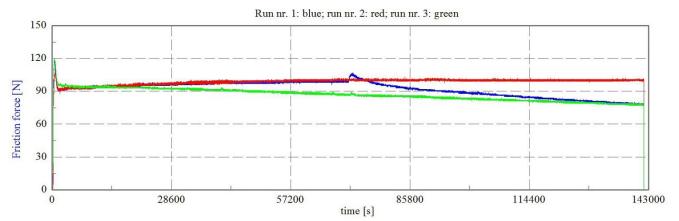
REWITEC® IN ACTION

SCIENTIFIC TESTS

Scientific tests

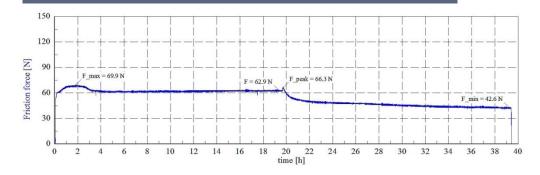
Competence Center of Tribology Mannheim-Germany

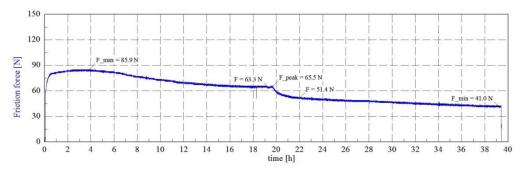
2-Disc Assembly Rolling Wear Tests


"Tribology is the science and technology of interacting surfaces in relative motion"

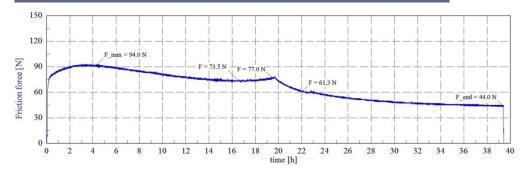
Institute Director Prof. Dr.-Ing.-Paul Feinle Laboratory Manager Dr. Markus Grebe

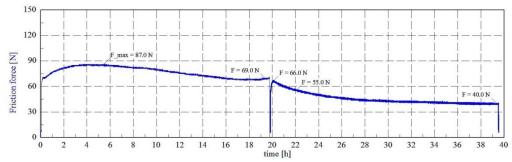
Scientific tests 2-Disc assembly rolling wear test – wind turbine oils



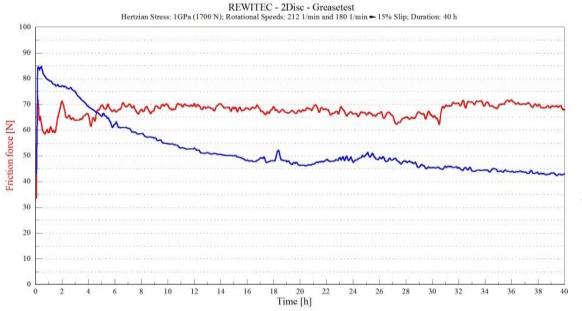

- Red graph without REWITEC®
- Blue graph with REWITEC® added after 20 hours
- Green graph with REWITEC® added at the beginning
- Reduction of the surface roughness (R_a) due to wear up to 58 %
- Reduction of the friction force up to 22 %

Scientific tests 2-Disc assembly rolling wear test – wind turbine oils


Castrol Optigear Synthetic X320


Mobilgear SHC XMP 320

Scientific tests 2-Disc assembly rolling wear test – wind turbine oils


Klübersynth GEM 4-320N

Fuchs Unisyn CLP 320

Scientific tests 2-Disc assembly rolling wear test – grease test

FAG Arcanol Multitop grease

Hertzian Stress: 1700 N

Rotational Speed: 212 min⁻¹ and

180 min⁻¹

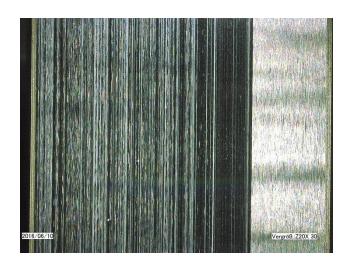
Slip: 15 %

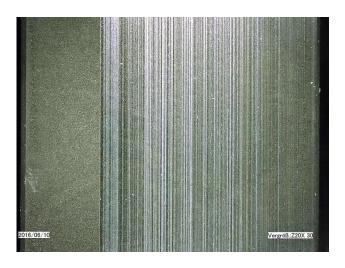
Duration: 40 h

Scientific tests 2-Disc assembly rolling wear test – wind turbine oils – Overview

	Oil grade	Castrol Optigear Synthetic	Mobilgear SHC XMP	Klübersynth GEM 4-320N	Klüberbio EG 2-	Fuchs Unisyn CLP 320	Amsoil PTN	Shell Omala
	•	X320	320	4-32UN	150	CLP 320	320	S4 GX 320
Measured data	R _a , before [µm]	0,22 µm	0,22 µm	0,22 µm	0,22 µm	0,22 µm	0,22 µm	0,22 µm
	R _a , after [µm]	0,129 µm	0,123 µm	0.100 µm	0.133 µm	0.109 µm	0.180 µm	0.165 µm
	R _a , Reduction [%]	41%	44 %	54 %	40 %	50 %	18 %	25 %
	R _z , before [µm]	2,00 µm	2,00 µm	2,00 µm	2,00 µm	2,00 µm	2,00 µm	2,00 µm
	R _z , after [µm]	1,52 µm	1,18 µm	0.91 µm	1,04 µm	1.02 µm	1.51 µm	1.42 µm
	R _{zt} Reduction [%]	24 %	41%	55 %	48 %	49 %	25 %	29 %
	Friction Force, before	62.9 N	63,3 N	73.5 N	120,0 N	69 N	81.8 N	81 N
	Friction Force, after	42.6 N	41,0 N	44,0 N	54,0 N	44,0 N	44,0 N	47,0 N
	Reduction Friction Force	33 %	35 %	40 %	55 %	36 %	46 %	42 %

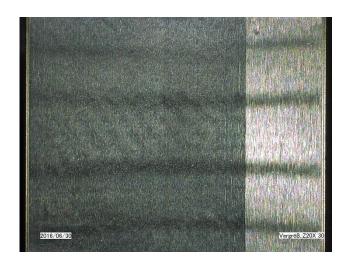
2-Disc Assembly Rolling Wear Tests

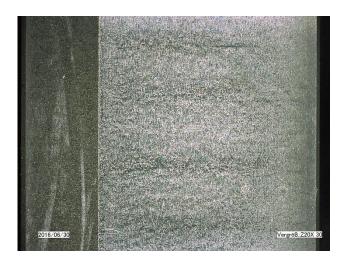



• Left:

• Right:

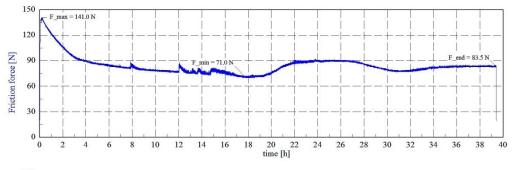
Standard steel disc Phosphated disc

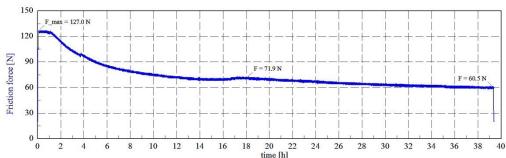




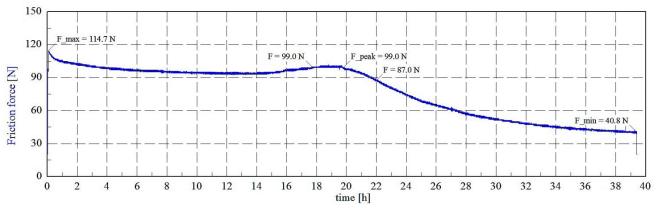
• Left picture: Standard steel disc without REWITEC®

Right picture: Phosphate disc without REWITEC®





- Left picture: Standard steel disc with REWITEC®
- Right picture: Phosphated disc with REWITEC®
- Difference of the surface roughness up to 77 %


without REWITEC®

with REWITEC®

- Reduction of the wear up to 9 %
- Reduction of the friction force up to 28 %

VW G 052 527 A2 with REWITEC® added after 19 hours 39 minutes

- Graph with REWITEC® and reference/uncoated discs
- Reduction of the friction force compared to phosphated discs:
 51 % without REWITEC®
 33 % with REWITEC®

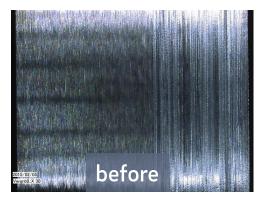
Scientific tests 2-Disc assembly rolling wear test – Engine oil

Test parameters:

Test specimens Test discs from previously

demaged camshaft

Camshaft manufacturer German engine manufacturer

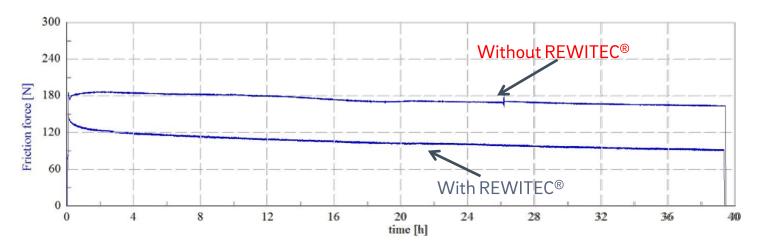

Test period 40 h

Lubricant Engine Oil SAE 10W-40 of the engine manufacturer

Scientific tests 2-Disc assembly rolling wear test – Engine oil

Camshaft disc before testing with REWITEC®:

 Heavy grooves in the right section before the test-run


Camshaft disc after testing with REWITEC®:

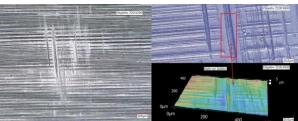
- Grinding pattern completely disappeared
- Grooves significantly reduced
- Significant reduction of friction

23.04.2017 REWITEC GmbH

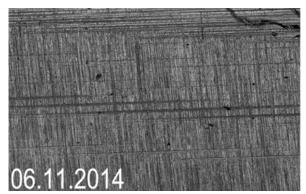
Scientific tests 2-Disc assembly rolling wear test – Engine oil

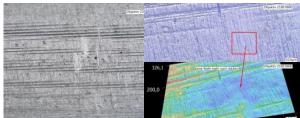
- Upper graph without REWITEC®
- Lower graph with REWITEC®
- Reduction of the friction force up to 45 %
- Reduction of the surface roughness up to 73 %*)

*) 50% less surface roughness can lead to a 20-fold life expectancy—thesis of Dr.-Ing. Michael Gleß. 23.04.2017 REWITEC GmbH


WIND ENERGY | AUTOMOTIVE | MARINE | INDUSTRY

EXAMPLES OF APPLICATION




Wear development on a Bosch Rexroth gear tooth (GE 1.5 SL) over a period of two years

Run through marks on the tooth flank

Run through marks on the tooth flank after 6 weeks and 2 years:

- Reduction of the surface roughness and friction force
- Improved load carrying capacity
- Less stress for the tooth flank

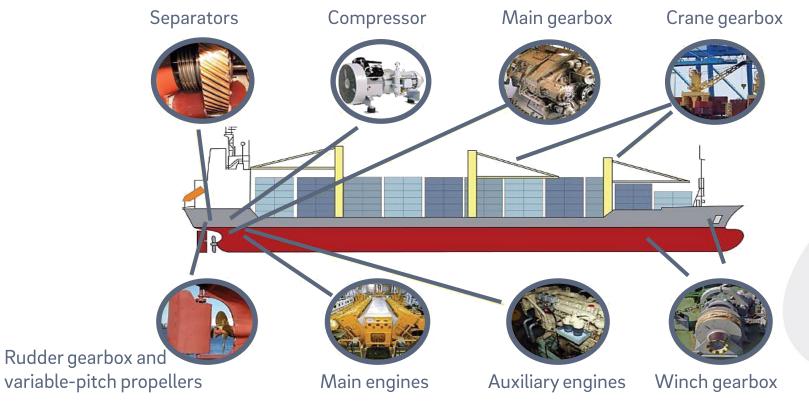
Coating and analysis of a wind turbine gearbox CSIC 2 MW VSCF

- Significant operational wear visible
- In the foot area visible micro pitting

- Operational wear noticeable reduced
- Reduction of micro pitting
- The contact pattern is optimized

Coating and analysis of a 2 MW Nordex wind turbine planetary bearing

GEAR 4800507-020-02 after


Picture date: 16.12.2015

Picture date: 24.05.2015

 Rough bearing surface before the REWITEC® treatment

 Smooth bearing surface after the REWITEC® treatment

Coating and analysis of a generator on a ship

Task:

Fuel saving

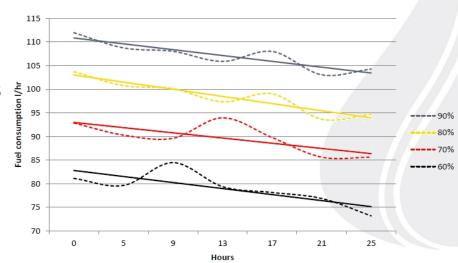
Result:

In long-term testing with certificated measurement instruments, the following was noted:

- Significant fuel savings in the tested diesel generator "Daihatsu 6 DK28"
 - \rightarrow up to 14.000,- US\$ per year

Coating and analysis of a diesel generator

Task:


Fuel saving

Result:

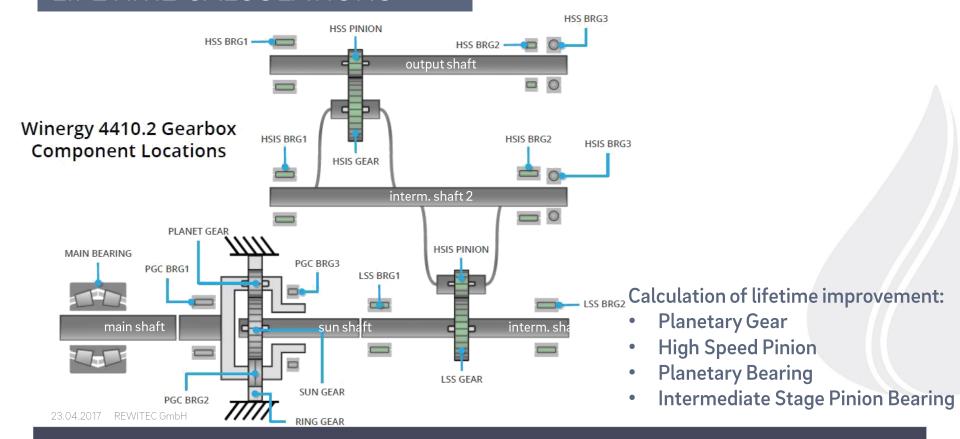
In long-term testing with certificated measurement instruments, the following was noted:

Up to 9 % fuel savings in the tested diesel generator

REWITEC® LIFETIME CALCULATIONS

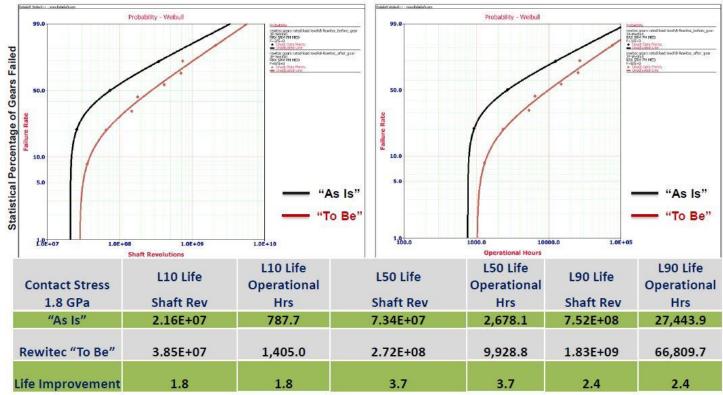
SENTIENT SCIENCE

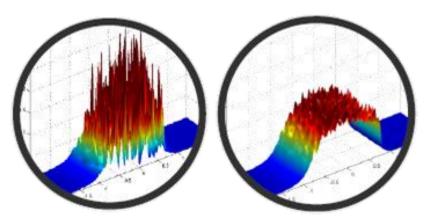
DigitalClone® for Suppliers


Computational Testing of Mechanical Systems & Components

DigitalClone

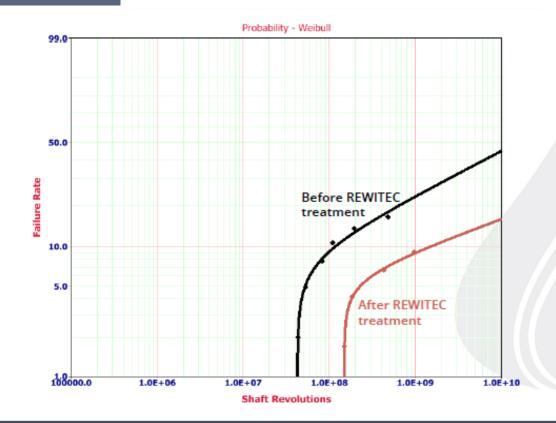
Materials-Based Computional Testing


Analysis of REWITEC® DuraGear® W100 Lifetime Effect on GE 1.5 MW Winergy 4410.2 Gearbox


Intermediate Pinion Gear – Gear tooth

Mixed-EHL Solution for Life Prediction

Surface Roughness Statistics Input to DigitalClone® Model			
Condition	Root Mean Squared (Sq. µm)	Skewness (Ssk)	Kurtosis (Sku)
"Baseline" Gear	0.4013	-2.0540	17.0800
After applying Rewitec DuraGear W100 Gear treatment	0.2235	-0.1449	2.4930


Left: Surface pressure of two modeled rough surfaces interacting without REWITEC®

Right: Surface pressure of two modeled smooth surfaces interacting with REWITEC®

Component	Simulation	Life, L50
	Baseline	16.6 yrs
Intermediate Pinion	Rewitec	> 50 yrs
Bearing	Life Extension	> 3
	Baseline	4.3 yrs
Planetary	Rewitec	14.2 yrs
Bearing	Life Extension	3.3

Component	Simulation	Life, L50	
	Baseline (damaged)	2.7 yrs	
Intermediate Pinion Gear	Rewitec	6.9 yrs	
i illoir Geal	Life Extension	2.6	

Assumptions	
Failure Rate Life, L50	7,5%
Failure Cost Present Value Avoided	200.000€
REWITEC® Cost per Turbine	6.300 €
Turbines in Fleet	50

Business Value Assessment Utility			
Total Failure per Year	3,75		
Present Value of Avoiding Failure per Year	750.000€		
Total Turbines where REWITEC® applied	315.000 €		
TOTAL Savings 1st year	435.000 €		
ROI	138 %		
Payback	5 Months		
TOTAL Savings 2nd year	750.000 €		
TOTAL Savings first 2 years	1.185.000 €		

Lifetime improvement by 2.6 – 3.3!

AT A GLANCE CONCLUSION

Less friction and temperature in the tribologic system means:

- Less stress and wear for the gearbox and the bearings
- Less stress for the lubricants
- Higher efficiency
- Higher realiability and availability, no downtime
- Cost savings, higher earnings
- ➤ Lifetime improvement by 2.6 3.3

Many thanks FOR YOUR ATTENTION

REWITEC GmbH

Dr.-Hans-Wilhelmi-Weg 1

35633 Lahnau, Deutschland

Telefon: +49 (0) 6441 / 445 99-0

E-Mail: info@rewitec.com

www.rewitec.com

Visit us on Facebook or YouTube.