Efficient wood transportation with optimization and High Capacity Transport

Wood Industry Summit - 26th May 2017

Skogforsk in brief

Forestry and the government in collaboration

Applied research and development for sustainable and profitable forestry

Communication of knowledge

Research areas:

- Forest production
- Wood supply

Wood transportation in Sweden

- Transported weight 72 millions tonne
- Average transport distance 91 km
- 26 % of wood supply cost

Wood supply network

DSS in Wood supply

- FlowOpt Strategic and tactical planning of wood transportation
- RouteOpt for routing and scheduling of logging trucks
- Calibrated route finder

A decision support tool for flow planning

Designing a wood supply network

Strategic and tactical planning

- 5 year year months
- Customer
- Supply area
- Multimodal

Due to

- Supply
- Demand

FlowOpt model

Maximizes profit by

- Determining the optimal flow to industry from
 - Supply points
 - Terminals
- Determining the optimal mix of transport modes
 - Truck
 - Train
 - Boat

Taking into account differences in

- Demand
- Assortment
- Time periods
- Prices
- Costs
- Etc.

Case from southern Sweden

Before opt.

After optimization

Reduced transport distance

- 20-30 % for wood chips
- 8-15 % for round wood

A decision support tool for routing of logging trucks

Route planning for a whole fleet

- VRPTW Vehicle Routing Problem with Time Windows
- Dispatching and scheduling involves
 - Supply and demand
 - Home base for trucks
 - Truck capacity
 - Roadside storage
 - Opening hour at industry

Benefits

- Cost reduction (3-5 %)
- Reduced emissions
- Increased delivery precision
- Fast rescheduling!

Weaknesses

- Real time data
- Centralized decision-making
- Reality is complicated

One More Pile-project, Transporting timber with 74-tonne and 90-tonne vehicles

Hypotheses for the project

Cost -20 %

Emission (CO₂) -20 %

Number of trucks -30 %

Conventional vehicle

Gross vehicle length: 24 m Gross vehicle weight: 60 t (64 t)

High capacity transport (HCT)

"Bigger Piles"

Gross vehicle length: 24 m Gross vehicle weight: 74 t

"One More Pile"

Gross vehicle length: 30 m Gross vehicle weight: 90 t

ETT – One More Pile

More efficient transports with increased payload

Transport economy

	60	64	74
Annual costs	-	-	+6%
Costs per distance	-	+2%	+13%
Total costs	-	<1%	+6%
Transport work	-	+4%	+15%
Transport cost per ton	-	-4%	-9%

Impact on environment

With crane:

74 tonnes vs. 60 tonnes -8 %

Without crane:

74 tonnes vs. 60 tonnes -13 % 90 tonnes vs. 60 tonnes -20 %

10 HCT-vehicles saved 106 thousand liter diesel and 300 ton CO_2 during 2014

Thanks for listening

ALANDERS 73

SCANIA

SUPER

DUZ 254

victor.asmoarp@skogforsk.se