

Robotics and Autonomy in Manufacturing

Stan Schneider, PhD RTI CEO IIC Steering Committee Vice Chair

The smart machine era will be the most disruptive in the history

The Industrial IoT Disruption Across Industries

You don't compete against competitors. You compete against market transitions. – John Chambers

Connectivity Technologies

The Industrial Internet Connectivity Framework

- The industry's only detailed analysis of IIoT Connectivity Technologies
- Architecture
- Assessment
- Standards
 - DDS
 - OPC UA
 - OneM2M
 - HTTP
 - MQTT
 - CoAP
- Examples & selection guidance
- Years of work by many architects across industries, standards, & technologies

Released Feb 28, 2017

Connectivity Technologies Don't Overlap!

System Aspect	Example User	Approach	Standard
Software Integration & Autonomy	Software Architect integrating components	Data-centric	DDS
Device interchangeability	Device manufacturer selling devices to technicians	Device-centric	OPC-UA
Web & Mobile User I/F	App builder supporting back-end services	RESTful	Web services/HTTP
ICT integration	Wide-area wireless telecom integrator	Common services layer	oneM2M

Data Centric is the Opposite of OO

Object Oriented

- Encapsulate data
- Expose methods
- Sequential execution

Data Centric

- Encapsulate methods
- Expose data
- Parallel updates

Users and Applications are Very Different!

You are a software architect. You:

- Manage & integrate software development teams
- Design & control architecture & data model
- Face challenges in defining software module interfaces, implementing redundancy, complex data flow

You are a device manufacturer. You:

- Build a device for many applications
- Do not control the installation data architecture
- Face challenges of device vendor interoperability, users who are not software experts

OPC UA

Device Integration for Vendor Interoperability

OPC UA Devices Provide Vendor Interoperability

^{©2018} Real-Time Innovations, Inc. Permission granted to distribute unmodified pdf.

OPC UA

- Device-Centric Object-Oriented Framework
 - Device models for common devices
 - Integrate devices into workcells
 - Client-server architecture
 - Browsable address space
 - New simple UDP pub-sub

Device Integration

- Challenges
 - Interoperate between vendors
 - Assembled by engineers or technicians
- Components
 - Devices
 - Reusable software products (e.g. HMI)
- Interfaces
 - Standard device models
 - Dynamic address space rollup
 - Read/write variables

The DDS Databus

Software Integration for Autonomous Control

DDS Autonomy Applications Span the IIoT

nextcit

Autonomous Systems Challenges

RTI founded from Stanford Aerospace Robotics Lab

- Manage complex data flow and state
- Ease system integration
- Ensure reliable data availability
- Guarantee real-time response
- Allow any network
- Build in security from the start
- Make deployment flexible
- Ease safety certification
- Adapt Intelligence
- Connect with Cloud Systems

Integrate Complex Software for Real-Time Distributed Control

How to Deal with the Data?

Source	Туре	Size	Frequency	Volume (approx.)
8 Cameras	2D high-res. video stream	8x 1-4 Mpixel/frame x 30 frames/s x 12-24bit/pixel	30 Hz	2.5-20 Gbit/s
4 Lidar sensors	3D point cloud	4x 300k-3M 3D points /s * 24bit/point	5-20 Flow	30-300 Mbit/s
5 Radar sensors	Object/target list	bytes to kbytes	Neb	~10 kB/s
16 Ultrasonic sensors	Object/target list	bytes generate N	10 Hz	~10 kB/s
1 GPS	Data message	S souple of bytes	20-200 Hz	~10 kB/s
Control commands	nomous st	A couple of bytes	50-250 Hz	~10 kB/s
Status/error AUC handling	Jata/string message	Whatever needed	Whenever needed	Whatever needed

12 Gb/s or 1.5 GB/s or 90 GB/min or 5 TB/h or 100 TB/d

Approximately and assuming 20h of operation per day

5G data rate: 100Mbps (cell edge) to 10Gbps (theoretical)

Stanford University

Autonomy Dataflow Challenge

The DDS Databus

DDS is the standard that defines a databus

Data-centric technology connects applications to the data, not to each other

Application

Application

DDS "Data Everywhere" Abstraction

Naturally parallel virtual shared memory

- Doesn't actually send all data...
- Every application gets everything it needs, when it needs it
 - Applications declare needs and capabilities
 - Databus delivers data
- Applications interface only to data
 - Every app speaks its own language
 - Databus maps language, CPU, OS, transport
- No servers
- Fast, reliable, scalable

Why a Databus? Software Decoupling.

- Flow: discovery, rates, reliability uncoupled
 - Any network, any transport
 - Full QoS control for every flow
- Space: services live anywhere
 - Cloud, fog, devices
 - Move them transparently
 - Controlled, natural redundancy
- Time: robust system operations
 - No dependency on startup sequence
 - Participants come & go at will
 - Matches evolving schema

Since Software Integration is All About The Data...

- Decoupled subsystems work independently
- Data-centric sharing lets them cooperate

Your Systems Work as One

DDS Underlies the ROS v2 Software Stack

Userland code						
C++ client library		C client library			Python client library	
ROS client library (rcl)						
ROS abstract middleware layer (RMW) (C API)						
DDS Databus						
OS Linu	x	OS X	Windows		Your OS here	
						_ /

Software Integration

- Challenges
 - Interface many software teams
 - Interoperate between software modules
 - Version matching
- Components
 - Custom software
 - Als, libraries
- Interfaces
 - Global data abstraction
 - Dataflow control
 - Common system data model

Putting Them Together

Integrating OPC UA and DDS

IIC Connectivity Core Standards Architecture

- Connectivity Core Standards
 - Provide syntactic interoperability
 - Stable, deployed, open standard
 - Standard Core Gateways to all other CCS
- Domain-Specific Connectivity Technologies
 - Connect via nonstandard gateway to any connectivity core standard

OPC-UA/DDS Gateway Standard

Provide transparent interoperability between *existing* DDS and OPC UA applications.

OMG mars/2018-02-01

$\mathsf{OPC}\:\mathsf{UA}\to\mathsf{DDS}$

- To allow DDS applications to access, subscribe, read, and manage information from OPC UA, this side of the gateway has:
 - DomainParticipants and a set of endpoints (DataReaders and DataWriters) to interact with DDS applications.
 - An OPC UA Client (or a set of OPC UA Clients) to connect to OPC UA Servers that provide the information.
- Different building blocks allow DDS applications to perform different tasks:
 - OPC UA Type System Mapping to DDS
 - OPC UA Service Invocation from DDS

$DDS \rightarrow OPC UA$

- To allow OPC UA clients to access, subscribe, read, and manage information from DDS, this side of the gateway has:
 - An OPC UA Server that exposes a portion of the information available in the DDS Global Data Space.
 - DomainParticipants, Publishers, Subscribers, DataReaders, and DataWriters endpoints to interact with DDS applications.

Combine Software and Device Integration

OPC UA/DDS Gateway Demo!

Further Information

- Industrial Internet Connectivity Framework (IICF): <u>www.iiconsortium.org/IICF.ht</u> <u>m</u>
- Guide to IIoT Connectivity: <u>http://www.iiconsortium.org/</u> journal-of-innovation.htm
- eBook coming in April; register for it online: <u>www.rti.com/eBook</u>

Connect!!

• Contact

stan@rti.com

@RTIStan

LinkedIn: <u>Stan Schneider</u> https://www.linkedin.com/in/stan-schneider-102466/

• Bio

- CEO Real-Time Innovations, Inc
- IIC Steering Committee Vice Chair
 - Past Chair, Testbed Subcommittee
 - Co-chair Ecosystem Task Group
- Advisory Board, IoT SWC
- Top-10 Global IIoT Influencer
- PhD, EE/CS, Stanford

