

IO-LINK

Die Datenautobahn in der untersten Feldebene

MURRELEKTRONIK ÜBER UNS

WER WIR SIND

"Spezialist für dezentrale Automatisierungstechnik"

WAS WIR MACHEN

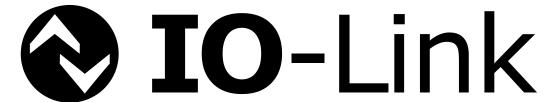
Wir entwickeln und produzieren hochwertige Produkte für die elektrische und die elektronische Installation von Maschinen und Anlagen

DAS MACHT UNS "EINZIGARTIG"

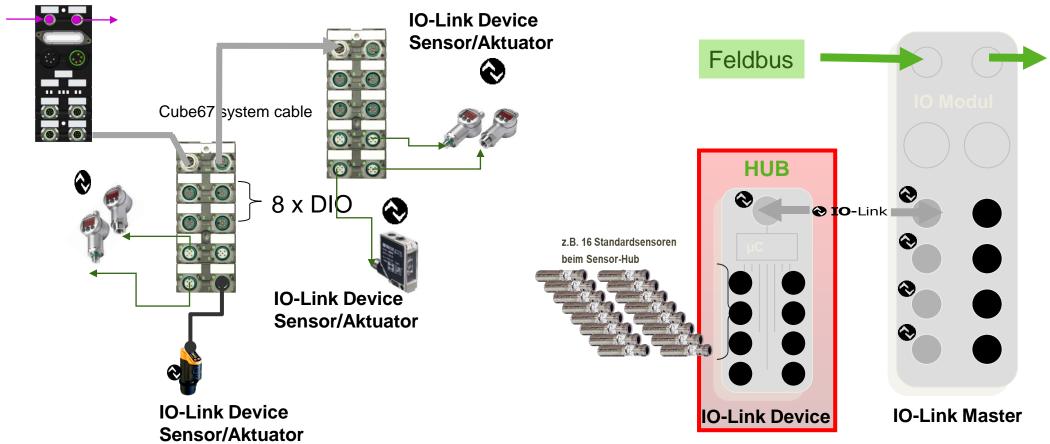
- Innovative Produkte
- Ausgeprägte Markt- und Kundenorientierung
- Teamwork mit Engagement
- Herausragende Qualität

IO-LINK AGENDA

Einfach parametrieren mit IODD on Board


- Warum IODD on Board?
 - Unterschiede IO Link
 - Problem der Parametrierung
 - Erklärung und Lösung
 - Mehrwert

IO-LINKDIE TECHNIK


Ist kein neues Bussystem

IO LINK ALS SCHNITTSTELLE FÜR INTELLIGENTE SENSOREN UND AKTOREN

IO LINK ALS EINFACHES INSTALLATIONSKONZEPT

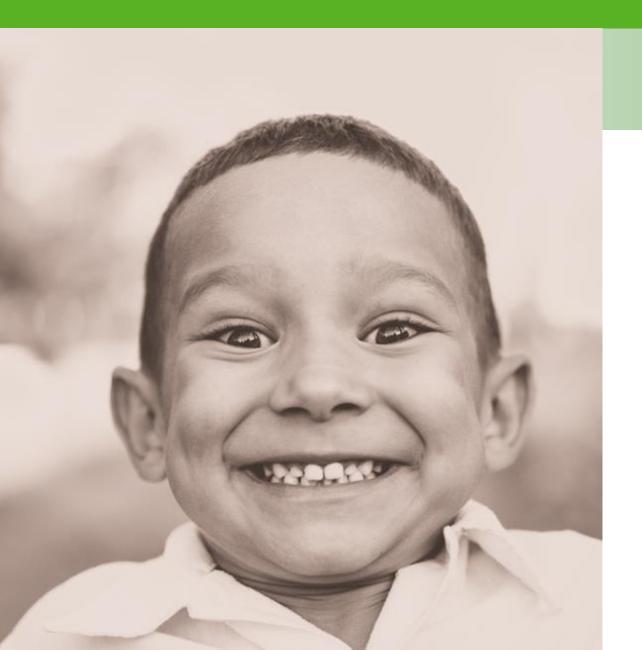
IO-LINK AGENDA

Einfach parametrieren mit IODD on Board

- Warum IODD on Board?
 - Unterschiede IO Link
 - Problem der Parametrierung
 - Erklärung und Lösung
 - Mehrwert

PROBLEMSTELLUNGPARAMETRIERUNG

- Welche Datenlänge?
- Wo ist die IODD?
- Welcher Master?
- Wie geht die Parametrierung?
- Welches Tool zur Parametrierung?
- Datenhaltung?
- Aufwand!


IO-LINK AGENDA

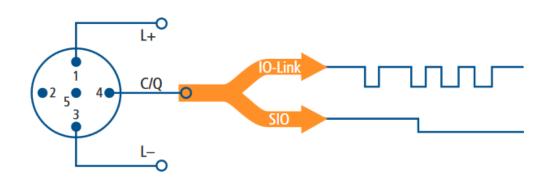
Einfach parametrieren mit IODD on Board

- Warum IODD on Board?
 - Unterschiede IO Link
 - Problem der Parametrierung
 - Erklärung und Lösung
 - Mehrwert

IO-LINK ERKLÄRUNG UND LÖSUNG

IODD on Board

IO-LINK EINBINDUNG VON SENSORIK/AKTORIK



- IO-Link ist eine bi-direktionale serielle Kommunikation, Punkt zu Punkt, von 1 Slave (genannt "Device") zu 1 Master
- Device und Master können nicht nur 1 Bit Input ODER 1 Bit Output austauschen, sondern bis zu 32 Bytes Input UND 32 Bytes Output an Daten
- Und all das mit einem normalen 3-poligen ungeschirmten Kabel mit bis zu 20 Metern Länge.
- Die 24V werden als Signallevel benutzt, mit 4.8, 38.4 oder sogar 230.4 kBaud

Das ist VIEL mehr als nur ein einzelnes DI oder DO!

Diese "Power" macht es möglich, mehr als nur I/O Daten zu übertragen:

- Prozessdaten: die realen I/O Daten werden natürlich zyklisch übertragen
- Statuswert: zusammen mit den realen I/O Daten kann man zyklisch Informationen zu deren Wert übertragen
- Device-Daten: wenn gewünscht können auch Device Identifikation und Parameter ausgetauscht werden (azyklisch)
- **Ereignisdaten**: und wenn etwas Wichtiges geschieht, kann der Master informiert werden

...10110...

...ok, ok,...

ArtNr. 59408

...Error!...

Entfernungswert zu einem Sensor

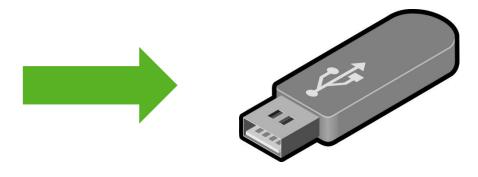
von Sick

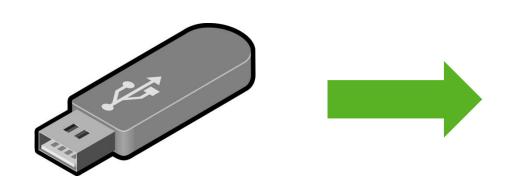
0: Distance measurement value, status of Q1 and Q2 switching outputs

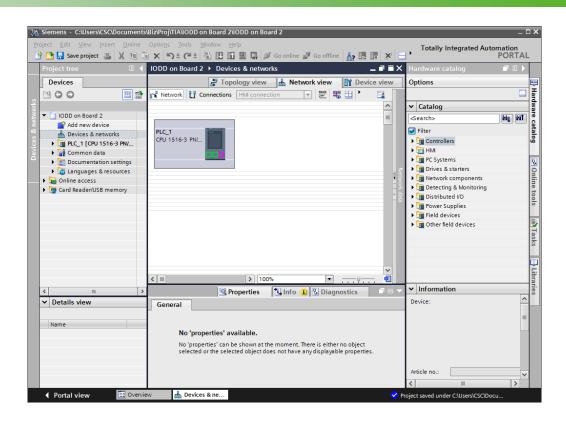
MSB ¹⁾															LSB ²⁾
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Distance measurement value (14-bit) 4).5)											Q2	Q1			

Output zu einer Ventilinsel

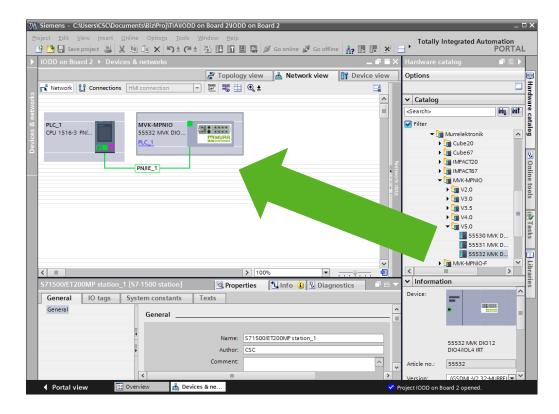
von Festo


<u> </u>	Byte 2/字节 2 Bit/位															No atil (Van
	Byte 2/字节 2 Bit/位								В	yte 	1/ Bit	子/位	ידי נ	Ventil/Vor- steuermagnet Valve/pilot solenoid coil		
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	阀/先导电磁 线圈
														X	Х	0/14 0/12 ¹⁾
												X	X			1/14 1/12 ¹⁾
										Х	X					2/14 2/12 ¹⁾
								Х	Х							3/14 3/12 ¹⁾
						Х	Х									4/14 4/12 ¹⁾
				х	Х											5/14 5/12 ¹⁾
		Х	Х													6/14 6/12 ¹⁾
Х	Х															7/14 7/12 ¹⁾



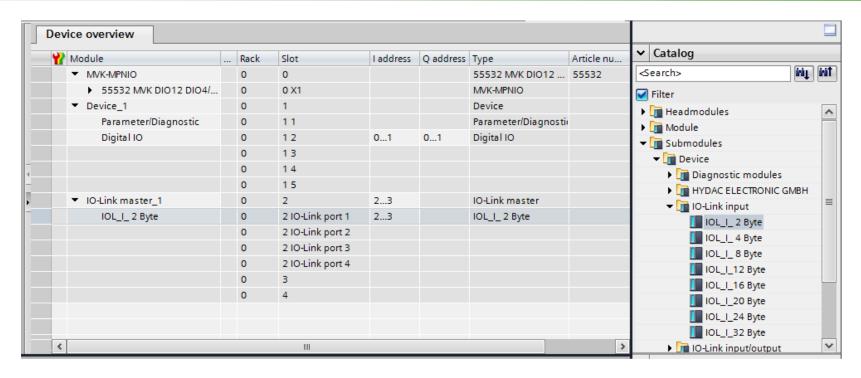


- 1. Der Kunde lädt die GSDML Datei für das IO-Link Master Modul herunter...
- z.B. 55532 MVK-MPNIO DIO12 IOL4 IRT 7/8" 5pin

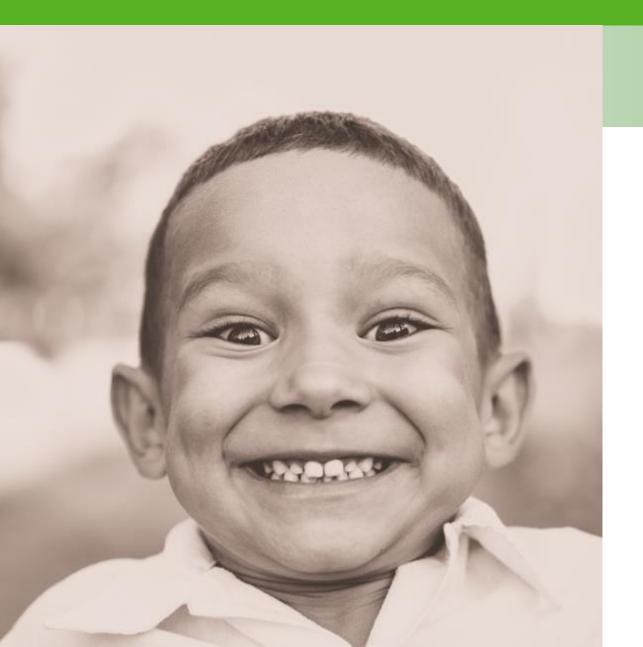


2. ...und importiert die GSDML Datei in sein technisches System

z.B. Siemens TIA Portal



3. Dann fügt er das Modul zum PROFINET Netzwerk hinzu... z.B. 55532



4. Wählt ein IO-Link Submodul mit der gewünschten Datenlänge

(entsprechend dem IO-Link Device das verwendet wird), gibt es am gewünschten IO-Link Port ein und reserviert damit einen I/O Bereich

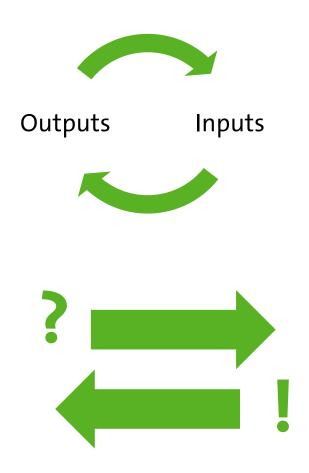
Das war's!

Die I/O Daten sind schon verfügbar; in diesem Fall auf den Bytes 2 und 3!

Das ist schon alles was der Kunde braucht, solange er

- IO-Link als Installationskonzept verwendet mit
 - Digitalen Hubs
 - Ventilinseln
- Oder er verwendet ein IO-Link Device an dem keine Parameter geändert werden müssen

Ah, Moment noch: Parameter?!...



IO-LINKPARAMETER

Keine Panik!

- Wie bereits erwähnt, hat IO-Link den großen Vorteil, dass man nicht nur I/O Daten austauschen kann, sondern auch noch andere Informationen, und das zur gleichen Zeit und mit dem gleichen Kabel.
- Die I/O Daten werden zyklisch ausgetauscht.
- Andere Informationen werden azyklisch ausgetauscht.

Zyklische Daten

- werden automatisch zwischen Master und Device ausgetauscht
- tauschen immer die gleiche Anzahl an Informationen aus

...10110...
...10110...
...11100...
...11100...
...00100...
...00110...
...00111...

Azyklische Daten

- müssen vom Anwender ausgelöst werden, damit ein Austausch stattfindet
- können verwendet werden, um eine unterschiedliche Anzahl an Informationen auszutauschen

Manufacturer? Murrelektronik! Art. No? 59407! Errors? Error 1! Error 2!

- Um jede azyklische Information differenzieren zu können, benötigen diese eindeutige "Adressen".
- Diese Adressen werden über 2 Nummern definiert:
 - IO-Link Index: Das ist eine Nummer zwischen 0 und 65535
 - IO-Link Sub-Index: Das ist eine Nummer zwischen 0 und 255
- Der Device-Hersteller muss spezifizieren, welche Daten auf welcher Adresse verfügbar sind. Dafür wird normalerweise eine Tabelle verwendet.

Beispiel für azyklische Daten

Device Identifikation: Information über das Device (typischerweise "read only").
 In unserem Beispiel der Produktname eines TR7439 Temperatur Sensors von IFM.

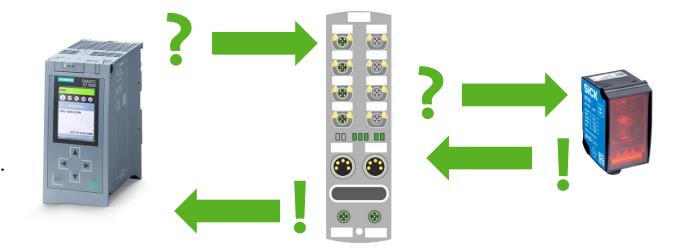
Name	Description	Index	Subindex	Data type	Length	Access rights	Default	Value range	Gradient	Offset	Unit
Device Access Locks		12	Sub 0	RecordT	16 Bit	rw		(true) Locked			
Vendor Name		16	Sub 0	StringT	max 19 Byte	ro	ifm electronic gmbh	(ude) Econou			
Vendor Text		17	Sub 0	StringT	max 11 Byte	ro	www.ifm.com				
Product Name		18	Sub 0	StringT	max 6 Byte	ro	TR7439				
Product ID		19	Sub 0	StringT	max 6 Byte	го	TR7439				
Product Text		20	Sub 0	StringT	max 34 Byte	ro	Temperature sensor evaluation unit				
Serial Number		21	Sub 0	StringT	max 12 Byte	ro					

Beispiel für azyklische Daten

Device Parameter: Anbindung des Device (typischerweise "read/write").
 In unserem Beispiel eine Einheit für die Temperatur, °C oder °F, die auf dem Sensordisplay angezeigt wird.

Name	Description	Index	Subindex	Data type	Length	Access rights	Default	Value range	Gradient	Offset	Unit
FOU2	[OUT 2] behaviour in case of fault	532	Sub 0	UIntegerT	8 Bit	rw	(4) OFF				
								(2) On			
								(4) OFF			
Loc	[Loc] locks the local user interface to prevent unintentional changes, [Loc] is resettable at the device	550	Sub 0	UIntegerT	8 Bit	rw	(1) uLoc				
								(0) Loc			
								(1) uLoc			
uni	Selection of unit on the	551	Sub 0	UIntegerT	8 Bit	rw	(0) °C				
	sensor display										
								(0) °C			
								(1) °F	ノ		

- Nun wissen Sie, dass der Kunde außer den I/O Daten auch Device Informationen lesen kann, sowie Device Parameter lesen und schreiben, falls nötig.
- Und dass dies über azyklische Kommunikation stattfindet, zu Adressen die in einer Tabelle dokumentiert sind. Geschriebene Daten (Parameter) werden im IO-Link Device automatisch gespeichert.
- Wenn der Kunde das Device austauscht, muss er es neu parametrieren, da diese Information nur im Device verfügbar ist, und nicht in der SPS.
- Wenn sowohl IO-Link Master als auch IO-Link Device die Version 1.1 haben, kann eine Kopie der Parameter im IO-Link Master gespeichert werden. Dies wird Datenspeicherung genannt.
- Beim Austausch erhält das neue Device die Parameter dann direkt vom Master.

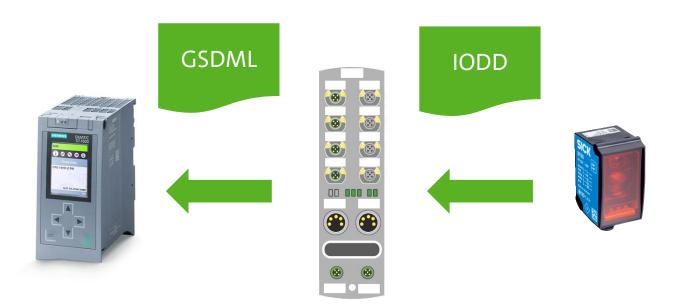

- Aber wie kann der Kunde diese Daten zum ersten Mal lesen oder an das Device schreiben? Oder falls er etwas ändern möchte?
- Es gibt zwei Möglichkeiten, um azyklische Informationen auszutauschen:
 - Azyklischer Zugang direkt vom Applikationsprogramm der SPS
 - IO-Link Tool + IODD

Wir werden jetzt beide Möglichkeiten erklären!

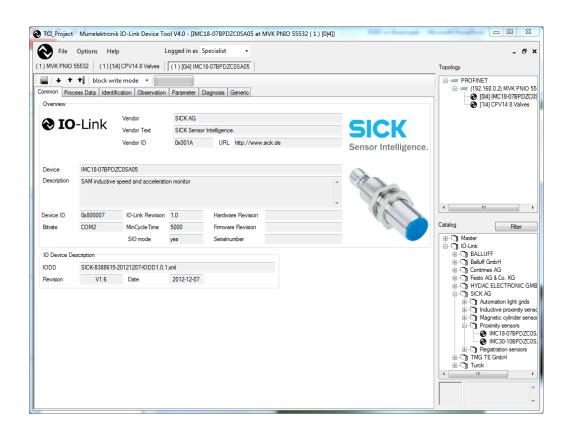
- Normalerweise hat eine SPS Befehle, die dem Anwender Zugang geben zu den azyklische Daten aus seinem Applikationsprogramm.
- Wenn er die IO-Link Adressen kennt, kann der Anwender in die Applikation eine Routine schreiben zum Lesen oder Schreiben von/an den Index/Sub-index (z.B.):
 - Liest den Hersteller- und Produktnamen des Device, wenn die Maschine eingeschaltet wird.
 - Schreibe Device Parameter, wenn das Device ausgetauscht wird.

TECHNIK: ZUGANG ZU AZYKLISCHEN DATENMIT TOOL + IODD

- Wie Sie wissen, spezifiziert der Device Hersteller alle Indexe/Sub-Indexe, die das Device supported. Der Hersteller kann diese "Tabelle" auch in einer elektronischen Form liefern, also in einer Datei. Diese Datei nennt sich "IO-Link Device Description", oder "IODD".
- Die IODD beschreibt dem IO-Link Master das IO-Link Device, genau so wie eine GSDML dem Profinet Controller das Profinet Device beschreibt.

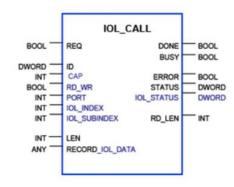


TECHNIK: ZUGANG ZU AZYKLISCHEN DATENMIT TOOL + IODD

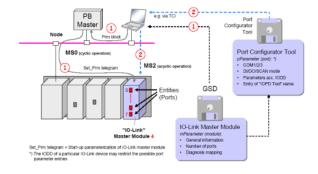

• Genau so wie eine GSDML in die Engineering Station importiert wird, die vom Hersteller des Profinet Controllers zur Verfügung gestellt wurde, wird die IODD in das sogenannte "IO-Link Tool" importiert, das vom Hersteller des IO-Link Masters zur Verfügung gestellt wurde.

TECHNIK: ZUGANG ZU AZYKLISCHEN DATENMIT TOOL + IODD

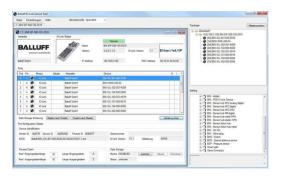
Mit diesem Tool und der IODD kann der Kunde ganz komfortabel die Daten aus jedem Index/Sub-Index des IO-Link Devices lesen oder an diesen schreiben.


MÖGLICHE ARTENDER DEVICE PARAMETRIERUNG

vom PC über USB / IO-Link Adapter



Von der Steuerung über den Master

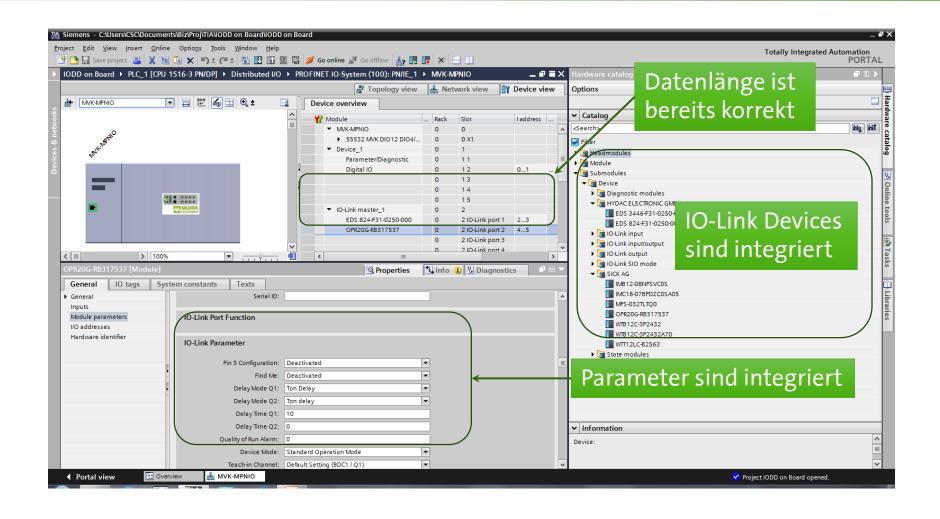


Mit Device Tool & Projektierungssoftware

Device Manager

IODD ON BOARD

- Dies gehört nun der Vergangenheit an, denn Murrelektronik hat "IODD on Board" entwickelt.
- Die Idee dahinter ist ganz einfach, aber revolutionär: Wir nehmen von der IO-Link Device IODD Datei die benötigten Parameter und integrieren sie in die original IO-Link Master GSDML Datei, und generieren damit eine kundenspezifische GSDML.
- Somit ist das Device nun integriert in unseren Master, wie wenn es ein Teil davon oder unser Modul wäre!



IODD ON BOARD

GANZ EINFACH!

IO-LINK AGENDA

Einfach parametrieren mit IODD on Board

- Warum IODD on Board?
 - Unterschiede IO Link
 - Problem der Parametrierung
 - Erklärung und Lösung
 - Mehrwert

MEHRWERT FÜR ALLE

Anlagenhersteller

- Daten sind in der Steuerung
- Kein zusätzliches Tool notwendig
- Keine IODD notwendig
- Kein zusätzlicher Programmieraufwand
- Alle Devices werden in einem Schritt parametriert

Anlagenbetreiber

- Es können Device und Master kopiert werden
- Offline Projektierung
- Daten können im laufenden Betrieb azyklisch geändert werden

Murrelektronik Halle 9 Stand D27

Wolfgang Wiedemann
Head of Application Sales Support

Murrelektronik GmbH wolfgang.wiedemann@murrelektronik.de

stay connected