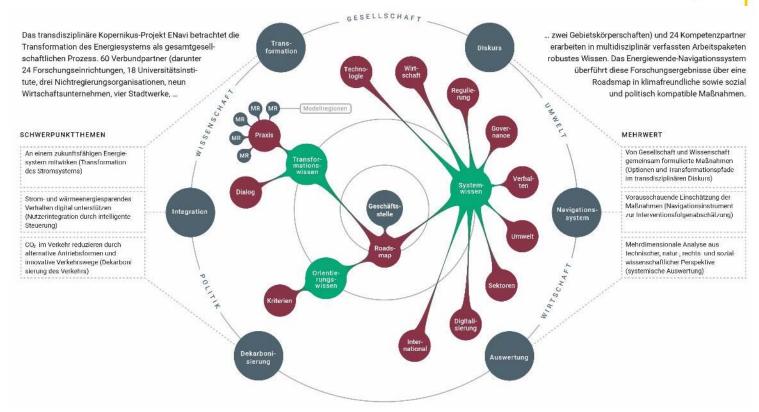


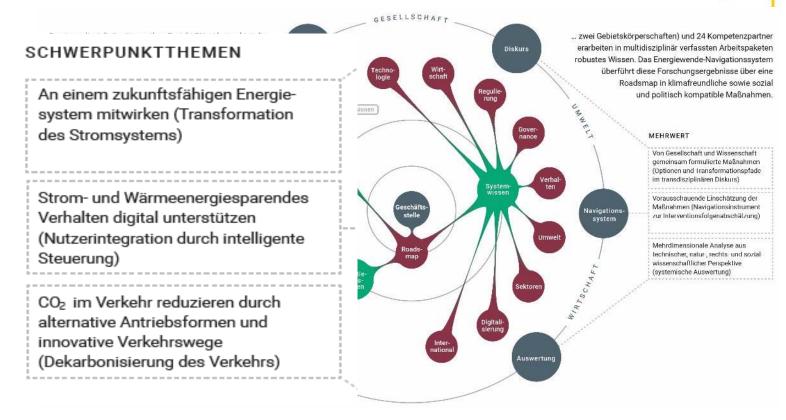
Foto: FONA/photothek

Das Kopernikus-Projekt ENavi

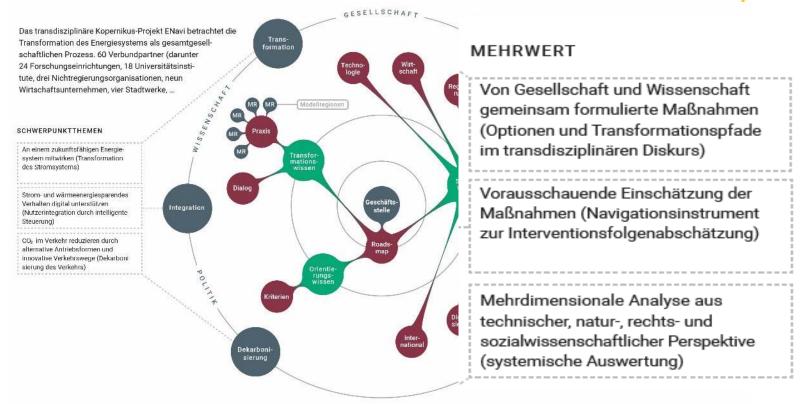
Wie kann die Transformation des Energiesystems gelingen?

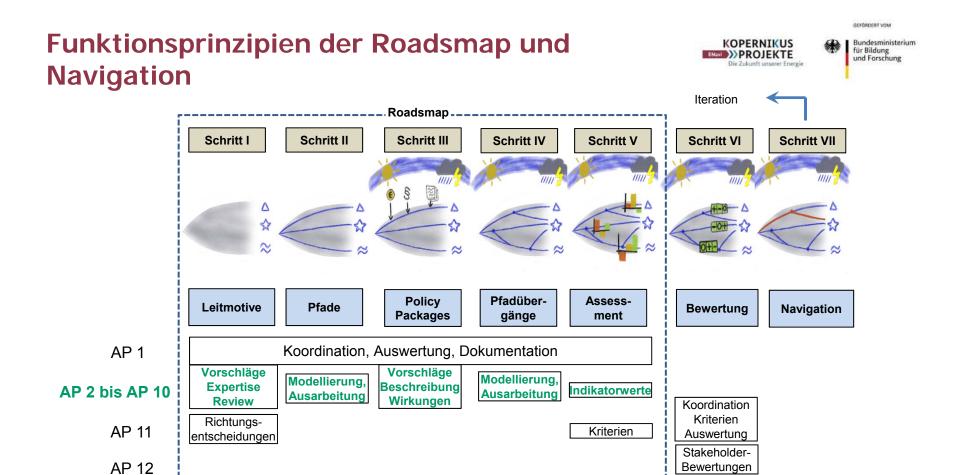

Maike Schmidt

Robustes Wissen zur Energiewende

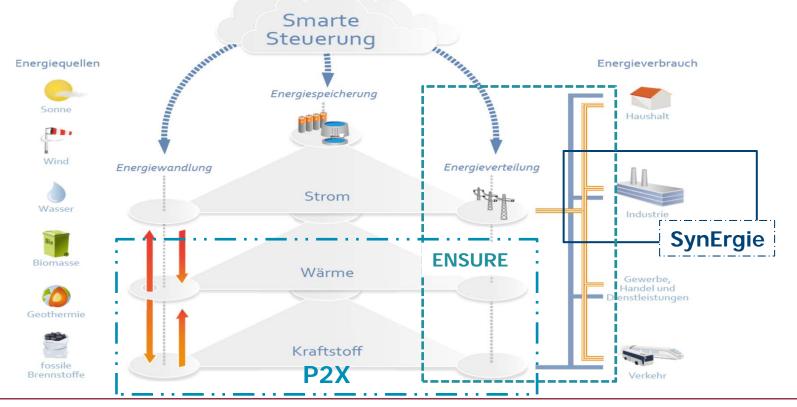


Robustes Wissen zur Energiewende




Robustes Wissen zur Energiewende

GEFÖRDERT VOM



Technologieanlayse im Rahmen der Roadsmap und Navigation

GEFÖRDERT VOM

"Übersetzung" der Bewertungskriterien für die Technologiebewertung

- ⇒ Definition: Akzeptabilität ist ein normativer Begriff, der die Akzeptanz von risikobehafteten Optionen mittels rationaler Kriterien des Handelns unter Risikobedingungen festlegt.
- ⇒ Herausforderung:Ableitung von Kriterien, die dies widerspiegeln.

Akzeptabilität ⇒ Technologiespezifische Kriterien

⇒ Zeitliche Dimension der Verfügbarkeit der Technologie

Effizienz

- ⇒ Kostendimensionen
- ⇒ Nutzendimensionen

- ⇒ Eingrenzung der Betrachtung
- ⇒ Ökologische Dimension
- ⇒ Soziale Dimension

Nachhal -tigkeit Effekti-

vität

- ⇒ Beitrag zu einem resilienten
 Energiesystem im Zusammenspiel
 mit weiteren Komponenten

Beispiel: Ableitung von Kriterien für Akzeptabilität KOPERNIKUS PROJEKTE

Ökologisches Risiko

- > Ressourcenbedarf und -reichweite
- Recyclingfähigkeit
- Umweltverträglichkeit
- > Emissionen (in Herstellung, Betrieb, Entsorgung)
 - (Luft)Schadstoffe
 - Licht, Schatten
 - Lärm
- Flächeninanspruchnahme
- Sichtbarkeit

"Fairness"-Risiko

- Möglichkeiten der Teilhabe
- > Modularität der Technologie (dezentral und/oder zentral einsetzbar)
- Regionale Konzentration z.B. durch unterschiedlich verteilte Potenziale

Unfallrisiko

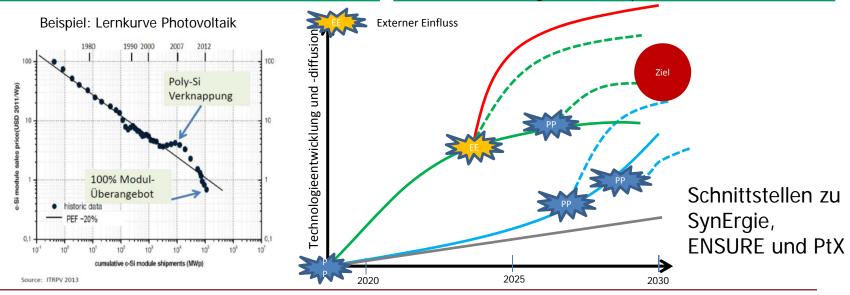
- > in der Produktion
- > im Betrieb

Entwicklung eines Punktesystems zur Bewertung der Einzeltechnologie ebenso wie für einen Technologievergleich

Darstellung beispielsweise in Form einer Ampel:

Technologie					
Α					
Ressourcenverbrauch		Bewertung:	Nachhaltigkeit		
_					
Score		<u>100</u>			
Enorgio		Elächo	Material	Scoro	
chergie	10		iviateriai	Score	
			0.46		
	0.59	0.25	0.16		
<u>[</u>	100	100	100	:	100
	A	A verbrauch Score Energie 10 0.59	A	Nachhaltigkeit Nachhaltigkeit	Nachhaltigkeit Nachhaltigkeit

Technologieentwicklungspfade



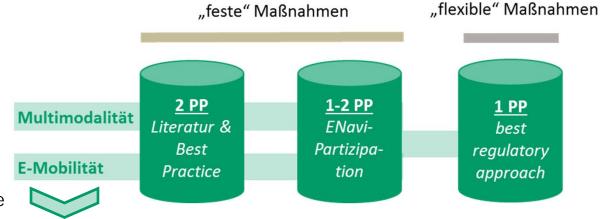
Nationale Entwicklung:

- Öffentliche und private Forschungsausgaben
- Innovationsumfeld und -bedingungen
- Politische Rahmenbedingungen (Policy Packages)
- Gesellschaftliche Anforderungen

Internationale Entwicklung:

- F&E-Aktivitäten und Förderung in anderen Ländern
- Innovationsumfeld- und -bedingungen
- Politische Rahmenbedingungen
- Energiepreisentwicklung
- Ressourcenverfügbarkeit und -preise

Entwicklung von Policy Packages am Beispiel von Schwerpunkt 3 "Dekarbonisierung des Verkehrs"



Policy Package:

Integrierte, aufeinander bezogene Maßnahmen zum Erreichen eines Ziels Ein Maßnahmenpaket besteht aus:

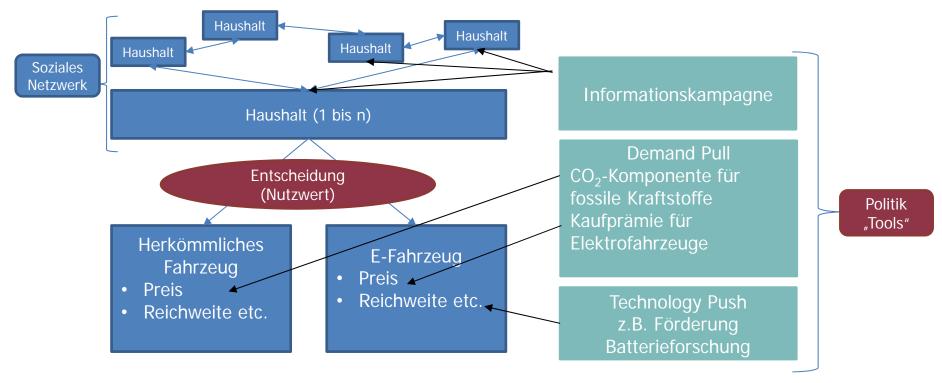
- Kernmaßnahmen
 - möglichst hoher Beitrag zur Zielerreichung
 - hohe gesellschaftliche & politische Akzeptanz und Durchführbarkeit
- Flankierenden Maßnahmen
 - Verstärkung der Wirksamkeit
 - Verstärkung der Akzeptanz
 - Verstärkung der politischen Durchführbarkeit der Kernmaßnahme

Kernmaßname I: Verkchärfung der CO_2 -Grenzwerte Kernmaßnahme II: Einführung einer CO_2 -Komponente für

fossile Kristoffe

Flankierend: Technologieer Wisklung Intelligente Ladesäule und

Tarifsysteme


Parkraummanagement Informationskampagne

Agentenbasierte Modellierung zur Analyse der Diffusion von innovativen Technologien

KOPERNIKUS Bundesministerium Agentenbasierte Modellierung zur Analyse für Bildung >>> PROJEKTE und Forschung der Diffusion von innovativen Technologien 100 Verteilung Anzahl an *n* Haushalten auf die Diffusionsanteile nach Rogers Je nach Zuteilung verfügen Haushalte über einen bestimmten Präferenzwert für innovative Technologie (Elektromobilität) 75 Market share Nutzwertanalyse: Falls Nutzen E-Kfz > Nutzen herkömmliches Fahrzeug → Kauf E-Kfz 25 Nutzen: Preis, Reichweite, Einstellung, soziales Prestige etc.

Early

Adopters

13.5 %

Innovators 2.5 %

Early

34 %

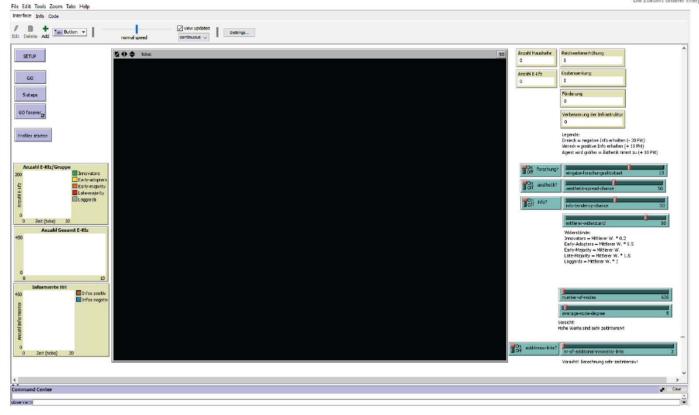
Majority

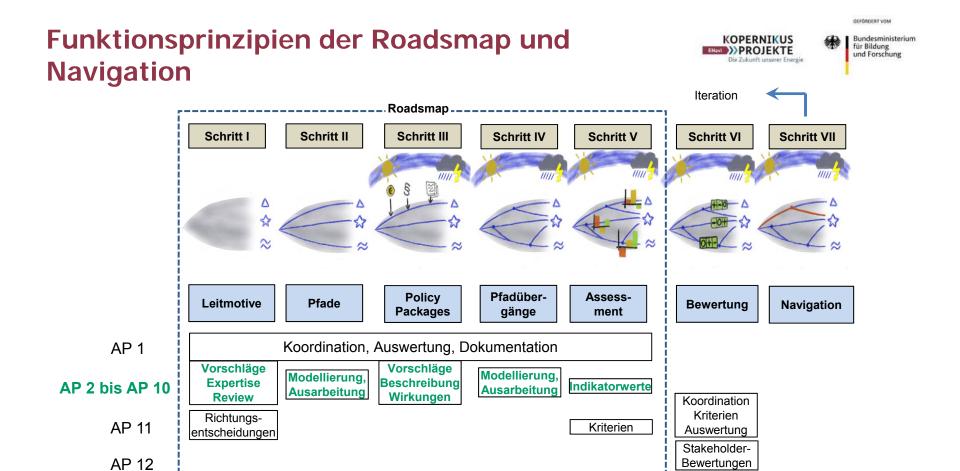
Late

34 %

Majority

Laggards


16 %

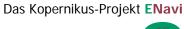

NetLogo Diffussionsmodell

GEFÖRDERT VOM

Kontakt

Name Maike Schmidt

Funktion Leiterin des Fachgebiets Systemanalyse im


ZSW und Koordinatorin von AP 2

E-Mail maike.schmidt@zsw-bw.de

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Meitnerstr. 1 70563 Stuttgart http://www.zsw-bw.de

