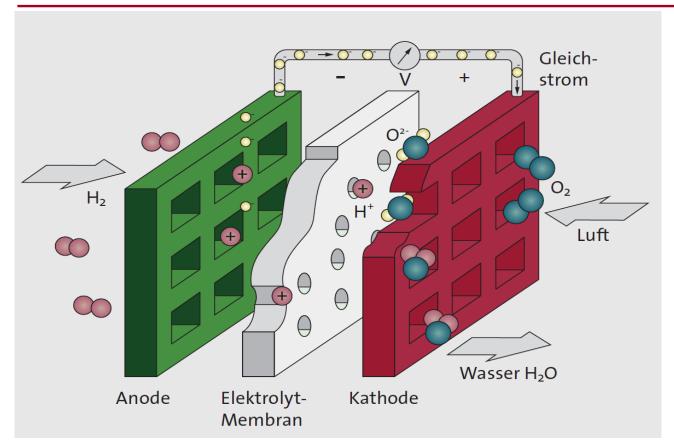
Ein kleiner Versorger für den Hausgebrauch - die Brennstoffzelle

Hagen Fuhl Vizepräsident B.KWK

AGENDA

01 Funktionsweise von Brennstoffzellenheizgeräten

02 Vorteile von Brennstoffzellenheizgeräten


03 Einsatzbeispiele

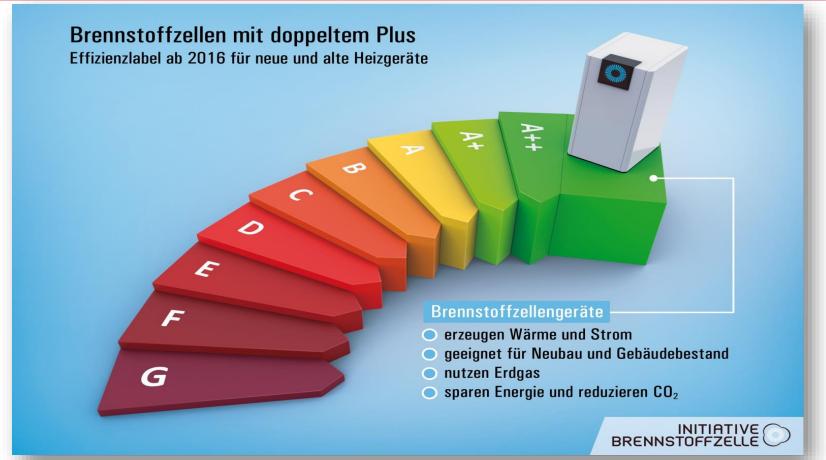
04 Marktpotenziale und Marktübersicht

05 Fördermöglichkeiten

Wie funktioniert eine Brennstoffzelle?

- Direkte Umwand-lung in Wärme und Strom
- Höchste Effizienz
- Geringste CO₂ Emissionen
- Praktisch geräuschlos und vibrationsfrei
- Geringe Wartungskosten
- Zukunftssicher

Eigenschaften von PEMFC und SOFC



	PEMFC Proton Exchange Membrane	SOFC Oxidkeramik		
Elektrolyt	Polymer-Membran	Festkeramischer Elektrolyt		
Arbeitstemperatur	70−90 °C	650–1.000 °C		
Brennstoff	WasserstoffErdgasMethanolMethan	WasserstoffErdgasMethan		
Einsatzbereich	Kfz-AntriebBHKWMikro-KWK	KraftwerkBHKWMikro-KWK		
Anlagenwirkungs- grad (elektrisch)	~ 32–38 %	~ 33–60 %		

Quelle: BDH "Brennstoffzellen für die Hausenergieversorgung"

Brennstoffzellen mit doppelten Plus

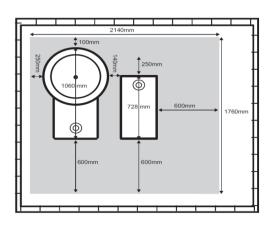
Technische Daten einer Brennstoffzelle

Brennstoffe:	Erdgas Typ E & Typ LL		
Leistungsdaten:	250-700 W elektrisch		
	960 W thermisch		
Wirkungsgrade ¹ :	>35 % elektrisch		
	56% thermisch		
Maße	1800 mm (Höhe²)		
(Gesamtsystem):	1200 mm (Breite)		
	1050 mm (Tiefe)		
Gewicht BZE:	125 kg		
Standzeit:	Stack-Lebensdauer von 80.000 h bei 1000 Start/Stopp-Zyklen		

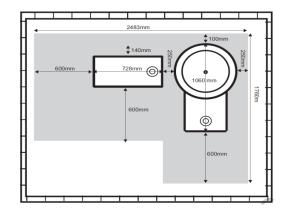
¹ bezogen auf H_i nach DIN EN 50465

² ohne Abgassystem Änderung und Irrtum vorbehalten

Flexible Abgasführung und Aufstellung

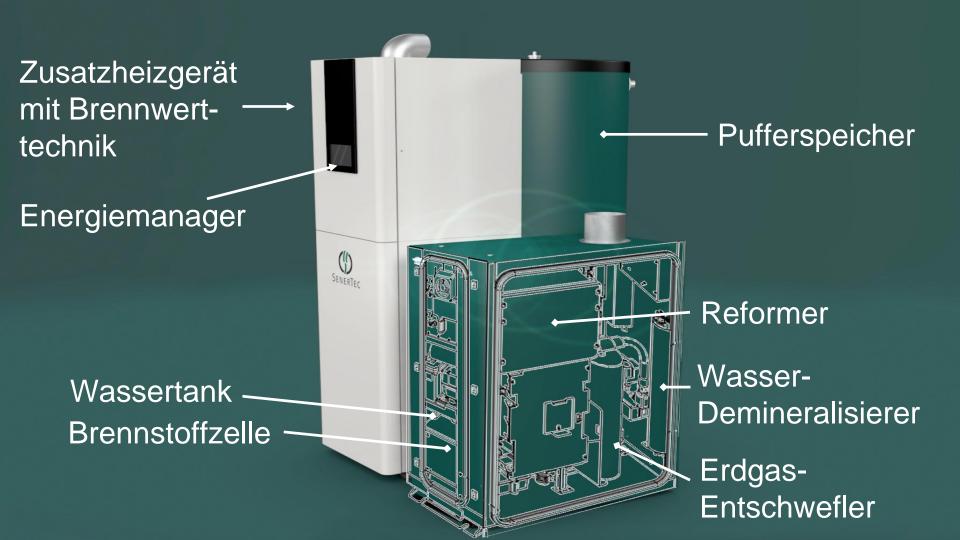


Gemeinsame Abgaszusammenführung Spitzenastkessel und Brennstoffzelle DN 80, bis zu 23 m Höhe, LAS¹ oder im


raumluftunabhängiger Betrieb, erforderliche Raumhöhe 2,0 m (2,10 m empfohlen)

Aufstellung Brennstoffzelle rechts

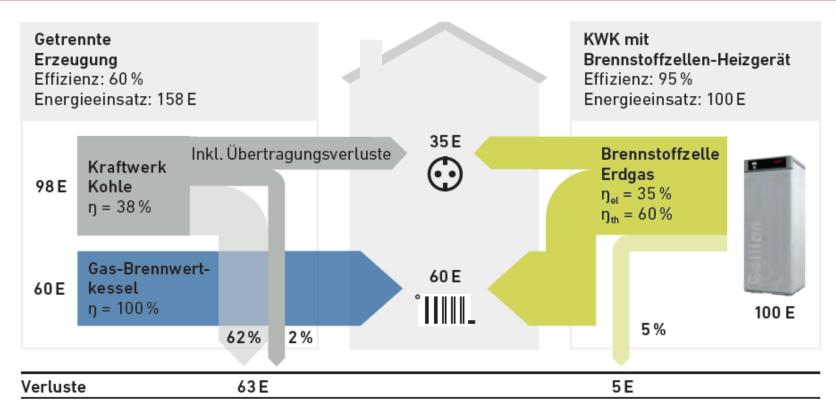
Aufstellung Brennstoffzelle links



1: Luft-Abgas-System

7

Schacht,


AGENDA

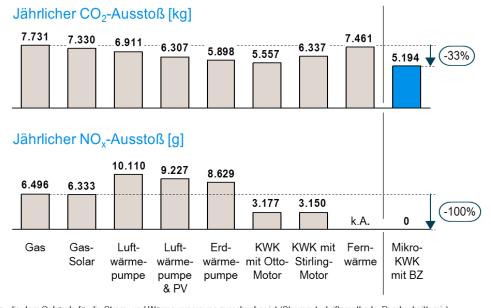
- 01 Funktionsweise von Brennstoffzellenheizgeräten
- 02 Vorteile von Brennstoffzellenheizgeräten
- 03 Einsatzbeispiele
- 04 Marktpotenziale und Marktübersicht
- 05 Fördermöglichkeiten

Bis zu 36% Primärenergieeinsparung

E: Energieeinheiten

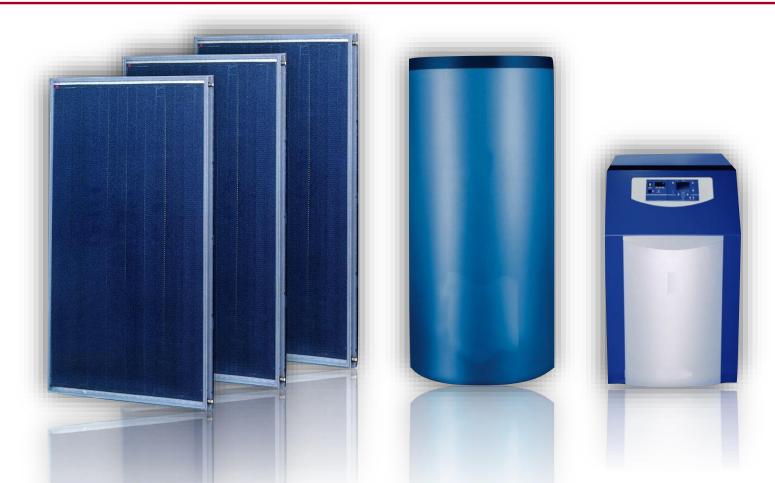
Quelle: ASUE, eigene Berechnung

Deutliche Reduktion von Emissionen


Roland Berger

Der CO₂-Ausstoß von Brennstoffzellen ist 30% geringer als bei Brennwertkesseln – Der NO_x-Ausstoß lässt sich auf Null reduzieren

Anwendungsspezifisches Emissionsbenchmarking¹⁾


	MÜNCHEN
Bewohner	4
Beheizte Fläche	103 m ²
Baujahr	1962
Wärmebedarf	21.438 kWh
Strombedarf	5.200 kWh
Zentralheizung	

¹⁾ Unter Berücksichtigung der jährlichen Emissionsbilanz, die dem Gebäude für die Strom- und Wärmeversorgung zurechenbar ist (Stromgutschriftsmethode, Durchschnittsmix) Quelle: FCH JU Koalition, Roland Berger

Strom, Warmwasser und Wärme - getrennt -


Strom, Warmwasser und Wärme – in einem -

Energiepreisentwicklung

Was kostet eine kWh Wärme?

... wenn der Strom selbst verbraucht wird

Die eigene Stromtankstelle in ihrem Haus

Blauer Strom – Strom aus hocheffizienter KWK

Die Energiewende

GRÜNER STROM

GRAUER STROM

Quelle: SenerTec GmbH/B.KWK e.V.

AGENDA

- 01 Funktionsweise von Brennstoffzellenheizgeräten
- 02 Vorteile von Brennstoffzellenheizgeräten
- 03 Einsatzbeispiele
- 04 Marktpotenziale und Marktübersicht
- 05 Fördermöglichkeiten

Modernisierung eines Einfamilienhauses

"Die Möglichkeit unabhängiger vom Energieversorger zu werden"

Gebäude in Freiburg

- Doppelhaushälfte
- Baujahr 1996
- Wohnfläche 135 m2
- 4 Personen

Energieversorgung

- Heizkörper
- Hauptwärmeerzeuger:
 Gasbrennwertkessel (alt)
- Seit 29.03.2016 Dachs InnoGen (ca. 6.000 Vbh)
- Gasverbrauch: 13.849 kWh (2015)
 / 17.957 kWh (2016)
 Stromnetzbezug: 5.040 kWh (2015)
 / 2.520 kWh (2016)
- Ca. 850 €/Jahr Einsparung an Gas und Strom

Quelle: Initiative Brennstoffzelle e.V. getragen von Zukunft Erdgas und BDH

Praxisbeispiel Dachs InnoGen im Bestand

21

Gebäude in Karlsruhe

Paujahr: 1907

Wohnfläche: ca. 310 m²

Wohneinheiten: 3

Bewohner: 9

 Dach gedämmt und Fenster: großteils erneuert 2008

 Außenwand und Kellerdecke ungedämmt

Energieversorgung (alt)

- Raumwärmeerzeugung
- Heizölkessel (Baujahr 1991)
- Heizölverbrauch: ca.3.500 L/a
- Warmwassererzeugung -> elektrisch für Dachgeschoss und Obergeschoss und Gasdurchlauferhitzer für Erdgeschoss

Stromnetzbezug: ca. 13.000 kWh/a

Quelle: SenerTec GmbH

Praxisbeispiel Dachs InnoGen im Bestand

Gebäude in Karlsruhe

• Baujahr: 1907

Wohnfläche: ca. 310 m²

Wohneinheiten: 3

Bewohner: 9

 Dach gedämmt und Fenster: großteils erneuert 2008

 Außenwand und Kellerdecke ungedämmt

Energieversorgung (neu)

- Raumwärmeerzeugung und Warmwassererzeugung
- DachsInnoGen Baujahr 2015
- Stromnetzbezug: von 13.000 kWh/a auf ca. 8.500 kWh/a gesunken

Quelle: SenerTec GmbH

AGENDA

- 01 Funktionsweise von Brennstoffzellenheizgeräten
- 02 Vorteile von Brennstoffzellenheizgeräten
- 03 Einsatzbeispiele
- 04 Marktpotenziale und Marktübersicht
- 05 Fördermöglichkeiten

dena Gebäudestudie

GEBÄUDESTUDIE

Szenarien für eine marktwirtschaftliche Klima- und Ressourcenschutzpolitik 2050 im Gebäudesektor

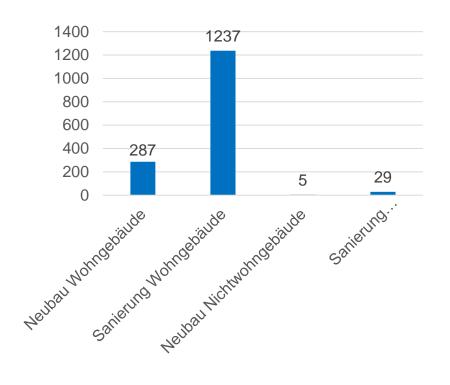
Eine Studie der dena, der geea und weiterer Verbände aus dem Bereich Gebäudeenergieeffizienz.

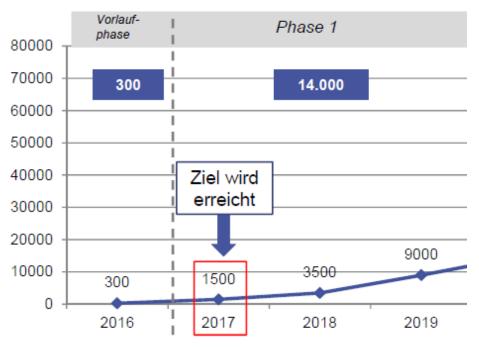
Seite 6:

. . .

Die Zielerreichung der Klimaschutzziele 2050 ist möglich.

. . .


Diese Zielerreichung ist genauso möglich, wenn bis 2050 ein breiter Mixeinsatz konventioneller Heizungstechnologien verwendet wird. In den Technologiemix-Szenarien TM80 und TM95 befinden sich dann über 10 Mio. effiziente Gas-und Ölheizungen im Gebäude-sektor sowie **über 1**Mio. gasbetriebene Mini-KWK-Anlagen. Die Anzahl der Wärmepumpen liegt in diesen Szenarien 2050 bei rund 7 Mio. Geräten.


. . .

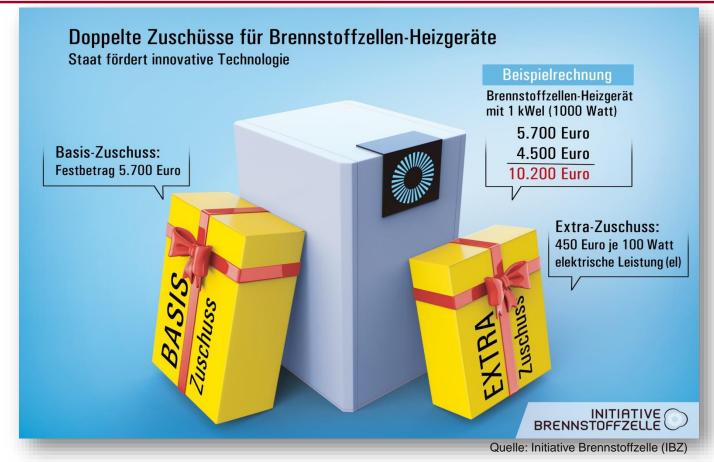
Marktzahlen

Geförderte BZH in 2017: 1.558 Einheiten

Quelle: Initiative Brennstoffzelle e.V. getragen von Zukunft Erdgas und BDH

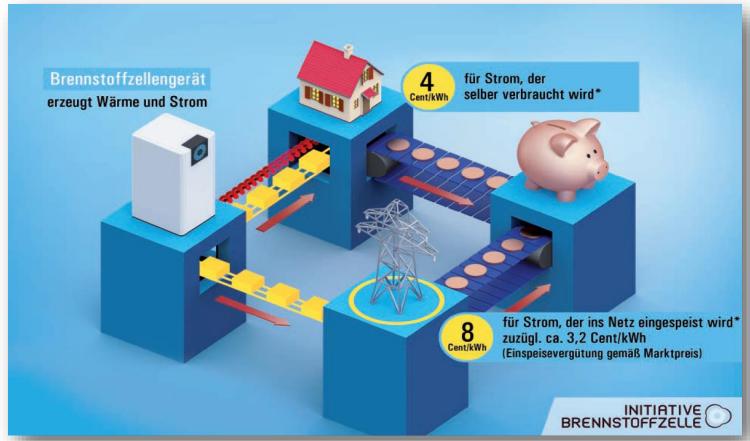
Marktübersicht

	fueldell	Saliteo	tuelce!!		<u>5.</u>		i domini	1
Hersteller	Buderus	HEXIS	Junkers	Viessmann	SenerTec	Vaillant	Elcore	SOLIDpower
Тур	SOFC	SOFC	SOFC	NT-PEM	NT-PEM	SOFC	HT-PEMFC	SOFC
Modell- bezeichnung	Logapower FC10	Galileo 1000 N	Cerapower FC10	Vitovalor 300-P	Dachs InnoGen	xellPOWER	Elcore 2400 Max	BlueGEN
Leistung (el/th)	0,7/0,62 kW	1,0/1,8 kW	0,7/0,62 kW	0,75/1 kW	0,7/0,95 kW (modulierende Anlage)	0,7/1,3 kW	0,3/0,7 kW	1,5/0,61 kW
Thermische Leistung des Zusatzbrenners	7,3-24 kW	7–21 kW	7,3-24 kW	5,5–19 kW	5,2-21,8 kW	5,8-27 kW	2,9–20,0 kW	extern, individuell wählbar
Speicher	Warmwasser- speicher 75 I, Pufferspeicher 140 I	extern, individuell wählbar	Warmwasser- speicher 75 I, Puffer- speicher 140 I	Warmwasser- speicher 46 l, Trinkwasser- speicher optional auf 300 l erweiterbar, Pufferspeicher 170 l	Pufferspeicher 300 l mit Frischwasser- station	extern, individuell wählbar	Elcore Energiespeicher mit hygienischer Warmwasser- bereitung: 560 l, 820 l, 2 x 320 l, 820 + 320 l, 2 x 820 l	extern, individuell wählbar
Elektrischer Wirkungsgrad	46 %	35 %	46 %	37 %	37,7 % (Volllast)	33 %	32 %	bis zu 60 %
Gesamt- wirkungsgrad	85 %	95 %	85 %	90 %	90 %	93 %	104 %	bis zu 85 %
Abmessungen in mm (B x T x H)	1.200 x 600 x 1.800	620 x 580 x 1.650	1.200 x 600 x 1.800	1.085 x 595 x 1.998	Brennstoffzellen- heizgerät: 453 x 728 x 1.054 Gesamtsystem: 1.250 x 1.060 x 1.800	599 x 693 x 1.640	600 x 550 x 1.050	600 x 660 x 1.100


AGENDA

- 01 Funktionsweise von Brennstoffzellenheizgeräten
- 02 Vorteile von Brennstoffzellenheizgeräten
- 03 Einsatzbeispiele
- 04 Marktpotenziale und Marktübersicht
- 05 Fördermöglichkeiten

Markt: Die Förderung des Bundes



Für jede erzeugte kWh Strom gibt es Geld vom Staat

29

Quelle: Initiative Brennstoffzelle (IBZ)

KWK IM ZIELDREIECK DER KLIMAPOLITIK

KLIMASCHUTZ. VERSORTUNGSSICHERHEIT. WIRTSCHAFTLICHKEIT.

B.KWK-KONGRESS 2018

17./18. OKTOBER 2018 IN BERLIN | WWW.BKWK-KONGRESS.DE

Herzlichen Dank für Ihre Aufmerksamkeit