



TRANSPARENT AND ELECTRICALLY CONDUCTING COATINGS
THROUGH WET CHEMICAL NANOTECHNOLOGY

TRANSPARENTE UND ELEKTRISCH LEITENDE BESCHICHTUNGEN DURCH NASSCHEMISCHE NANOTECHNOLOGIE

Dr. Peter William de Oliveira, Dr. Michael Opsölder







### TRANSPARENT & CONDUCTING COATINGS

- ▶ Nanoparticular ITO coatings
- ▶ Silver structures and coatings

## NANOPARTICULAR ITO



### <u>TIN DOPED INDIUM OXIDE In<sub>2</sub>O<sub>3</sub>:Sn – TRANSPARENT CONDUCTOR</u>

#### Crystalline, conductive ITO nanoparticles (10-30 nm)

- Surface modification
- Re-dispersible
- Adaption to matrix properties
- Very low light scattering effect

[2530-85-0]

Bi-functional binder: organo silanes e.g.

#### Methacryloxypropyltrimethoxysilane (MPTS) and/or siloxanes

- Chemical bonding to the particle surface
- UV-induced polymerisation
- "Gluing" of nanoparticles and adhesion to the substrate
- Improved mechanical properties (hard and flexible)
- Improved conductivity



TEM picture of ITO nanoparticles

# NANOPARTICULAR ITO

INM

- Printing of transparent conducting lines and patterns
  - Gravure printing R2R possible
  - Ink-jet printing prototyping
- Various substrates
  - Glass
  - Flexible ITO layers on polymer films
- Cost efficient manufacturing of flexible, structured ITO layers

#### ITO structures by gravure printing

- Lines, patterns
- Resolution: min. line width 100 μm
- Sheet Resistance:  $350 \Omega_{\square}$  after UV + thermal treatment







### PRINTED ITO COATINGS ON PET FOIL



### TRANSMISSION SPECTRA





- High transmission in the visible range 380 nm <  $\lambda$  < 780 nm
- **Low transmission T < 10 % in NIR range for \lambda > 1500 nm**

# COMPARISON: PRINTED / VACUUM ITO



#### TRANSMISSION AND REFLECTANCE SPECTRUM





| sheet resistance   | $\mathbf{k}\Omega_{\scriptscriptstyle \square}$ |
|--------------------|-------------------------------------------------|
| ITO <sub>vac</sub> | 0.25                                            |
| printed ITO        | 2.5                                             |
|                    |                                                 |

| refractive index   | n <sub>546</sub> |
|--------------------|------------------|
| ITO <sub>vac</sub> | 1.92             |
| printed ITO        | 1.61             |

#### Printed ITO coatings:

- Transmission in the visible range higher than vacuum deposited ITO coatings (ITO<sub>vac</sub>) due to lower n
- Lower transmission in NIR range than ITO<sub>vac</sub> (T < 10% for  $\lambda$  > 1500 nm), absorption by plasmon resonance
- Slightly higher reflectance in the NIR range than ITO<sub>vac</sub>

# ITO COATINGS ON GLASS



- Various coating techniques
  - Spin coating
  - Dip coating
  - Spraying
  - Inkjet printing



successive treatments UV

5 - 7 1.5 1.1 0.13 - 0.06Sheet resistance R ( $k\Omega_{\Box}$ ) % Transmission 91 90 93 > 90 coated glass, vs. air

Inkjet printed touch panel grid

### NANOPARTICULAR ITO

# INM

#### **SUMMARY**

- Transparent conductive layers or structures
- Competitive to vacuum deposited ITO
- ▶ Simple printing process, no vacuum potential for low cost
- Highly developed lab process for gravure printed layers and inkjet printed structures



demonstrator with curved inkjet printed touch panel

#### **CURRENT TOPICS**

- Development of working demonstrators
  - Flexible touch panels
  - Objects with touch sensors keyword "IoT"



cooperation with startup company to build working prototype with sensor surface / user interface





### TRANSPARENT & CONDUCTING COATINGS

- Nano particular ITO coatings
- ▶ Silver structures and coatings

# PHOTOMETALLISATION PHOTOCHEMICAL PROCESS



- ▶ Reduction of silver complex by photo catalyst + UV-light
- ▶ Metallic silver precipitates from aqueous solution
- 3 Ingredients:
  - Silver complex (precursor)
  - Photocatalyst
  - UV light
- Any one of them can be structured
- Multiple options for processing



# ▶ PHOTOCHEMICAL PROCESS

# INM

#### REDUCTION OF SILVER COMPLEX BY PHOTO CATALYST + UV-LIGHT

Advantage: Patterning can be realized by different approaches:

- Local application of photo catalyst
  - inkjet printing
  - screen printing
- Local application of silver complex
  - inkjet printing
  - screen printing
  - silicone stamp
- Mask irradiation with UV-light
- Direct writing with UV-laser



# PHOTOMETALLISATION PATTERNING BY IRRADIATION METHODS









Stamp

Lithography e.g. for glass sheets

Laser writing of Ag-lines, e.g. for prototyping

UV-irradiation through silicone stamp, e.g. for R2R

1 substrate 2 photo catalyst 3 Ag complex solution 4 mask 5 stamp

# PHOTOMETALLISATION STRUCTURES BY DIFFERENT METHODS: LASER WRITING



> SEM pictures after short and long UV laser irradiation







# PHOTOMETALLISATION STRUCTURES BY DIFFERENT METHODS: SILICONE STAMP

Light microscope and SEM picture of stamp structures



# DEVELOPMENT OF TOUCH SCREEN AT INM

- Typically anisotropic pattern with line widths from 3 7 μm
- Sheet resistance down to 15  $\Omega_{\square}$
- Optical transmission up to 92 %
- w/o further treatment: dark from substrate side, reflective from top side
- Fully functional capacitive touch panel demonstrated



silver mesh touch panel structure on glass



touch panel structure (2 sided)



micrograph of silver mesh structure

## PHOTOMETALLISATION

#### **APPLICATIONS**

- Photovoltaics
- ▶ Optics ⇒
- Electronics
- Low-E glasses
- Product labelling
- Packaging industry (RFID)

#### **CURRENT TOPICS**

- Improvement of mask process for PET (performance, reproducibility)
- Development of imprinting process from lab scale proof of principle demonstration into pilot scale R2R process
- Development of process for stretchable substrates such as silicone





Laser diffraction pattern of hexagonal stamp structure



Test structures on PDMS sheet

# PHOTOMETALLISATION

#### **SUMMARY**

- Process for direct structured deposition of silver structures
- Offers advantages of lithographic and printing processes
- ▶ Low material usage (< 100 nm), simple process low costs
- Structure sizes < 1 μm (periodic) possible</p>
- $\blacktriangleright$  Sheet resistance down to 200 m $\Omega_{\square}$
- No thermal post-treatment necessary
- Various substrates possible
  - Glass

  - silicone stretchability
- Highly developed lab process for mask irradiation on glass and PET substrates





Test structures on PET foil



Test patterns on glass by mask irradiation





# THANK YOU VERY MUCH FOR YOUR ATTENTION

Dr. Peter William de Oliveira

INM – Leibniz Institute for New Materials gGmbH

Campus D2 2

D-66123 Saarbrücken (Germany)

Phone: +49 681 - 93 00 - 148

Fax: +49 681 - 93 00 - 279

E-mail: peter.oliveira@leibniz-inm.de

www.leibniz-inm.de