

LightHinge+

Additively manufactured lightweight hood hinge with integrated pedestrian protection

Sebastian Flügel | EDAG Engineering GmbH | HANNOVER MESSE | 26.04.2018

EDAG Engineering GmbH: Portfolio

vertraulich Flügel Sebastian, CC Leichtbau, 02/2018

EDAG Engineering GmbH: AM projects

Agenda

- 2
 - Engineering conception | topology optimization | design | prototyping | testing
 - Process simulation
 - calibration | model setup | simulation | compensation | validation
- 4

3

Conclusion outlook | award

Agenda

Introduction active engine hood | project team

- Engineering
- conception | topology optimization | design | prototyping | testing

3 Process simulation

calibration | model setup | simulation | compensation | validation

4

Conclusion outlook | award

Introduction: Active engine hood lifting system

- Active engine hood lifting systems are established as an important pedestrian protection device in mass production
- Reasons against use in small-series and sports cars:
 - complex kinematics
 - many components
 - high weight
 - negative impact on design
 - high costs for small quantities

Active hood systems are rarely used in the small-series and sports car segment

Introduction: Project team

EDAG Engineering GmbH

- Initiator and independent engineering company
- Experts for lightweight construction and additive manufacturing
- Project lead, concept and component development

voestalpine Additive Manufacturing Center GmbH

- Material supplier and AM contract manufacturer
- Prototype production and AM know-how

simufact engineering GmbH

- Simulation software provider for manufacturing processes
- Distortion minimization through Simufact Additive Software

LightHinge+

With kind support from:

hirtenberger

Agenda

- 2 Engineering conception | topology optimization | design | prototyping | testing
 - 3 Process simulation
 - calibration | model setup | simulation | compensation | validation
- 4
- Conclusion outlook | award

Engineering: Conception

DE: https://www.youtube.com/watch?v=2z-3vqAKkBU

ENG: https://www.youtube.com/watch?v=n1tm-fwFmO4

Engineering: Topology and support structure optimization

- Topology optimization for weight reduction
- Resulting in a support volume of over 50 %
- Support reduction due to design adaptations
 - 1st step: 30 %
 - 2nd step: < 18 %

Support reduction for low post-processing and low costs

Engineering: Design

 Maximum component and function integration in a design- and weight-competitive package

breaking elements (detail A)

Use of bionic principles

hose quide

- E.g. tension triangle method and tree branching according to C. Mattheck
- Integrated pedestrian protection
 - Predetermined breaking elements for an additional degree of freedom

50

JEDAG

Image: connection point
gs pressure spring
screw guideImage: connection point
gs pressure spring
brend fuctionImage: connection point
gs pressure spring
brend fuctionImage: connection point
gs pressure spring
brend fuctionImage: connection point
grend fuctio

Engineering: First print job

Engineering: Testing

DE: https://www.youtube.com/watch?v=2z-3vqAKkBU

ENG: https://www.youtube.com/watch?v=n1tm-fwFmO4

Engineering: The result

- weight:
- number of components:
- tied-up capital:
- needed package:

- 19 high

- 51 %
 - 68 %
- **720 g**
 - **6**
 - very low
 - Iow

Lightest construction for a hood hinge

1.490 g

high

Agenda

- Introduction active engine hood | project team
- - Engineering conception | topology optimization | design | prototyping | testing
- **Process simulation** 3
 - calibration | model setup | simulation | compensation | validation

4

Conclusion outlook | award

Process simulation: Calibration of manufacturing process loads

- Cantilever specimens with different scanning strategies were printed by voestalpine.
- The cantilevers were cut and the deformation measured.
- Deformations were translated into simufact additive.
- The inherent strains that reflect the manufacturing process loads were calibrated.

Process simulation: Model setup for AM simulation

- Import part geometry
- Import support structure geometries
- Select material from database 316L steel
- Define process chain to be simulated (build part, cut from plate, remove supports)
- Mesh geometries with voxels

Process simulation: AM simulation of single parts

- Simulation of
 - Building of the part
 - Cutting from plate
 - Removing support structures
- Calculation times
 - Lower bracket
 - = 13.6 hrs on 14 cores
 - Upper bracket
 - 8.6 hrs on 8 cores

https://www.youtube.com/watch?v=VJaFm7Fj8Dw

Total displacement (mm)	
1.50	
1.35	
- 1.20	
1.05	
0.90	
- 0.75	
0.60	
0.45	
- 0.30	
- 0.15	
0.00	
max: 2.13 min: 0.00	
	L
Process-OB-LI-1 - Results	
22.7648 % (vxlayer 127)	

Process simulation: AM simulation results

- Model is stabilized as it loses its reference after being cut from the plate
- Therefore displacement values are not unique, but dependent on relative position to original mesh
- Nevertheless prediction of part distortion is unaffected

Process simulation: AM simulation results

EDAG

- Effective stresses shown
- Stresses are calculated based on non-linear elastic-plastic material model with realistic stress-strain relationship (flow curve)
- Yield stress at 585 MPa
 - Plastification leads to permanent deformation = distortion
- Ultimate strength is 685 MPa

Process simulation: Pre-deformed shape for distortion compensation

Process simulation: Distortion compensation

Original distortion of manufactured part vs. CAD

Distortion compensated based on simulation results

Process simulation: Distortion compensation

Agenda

- Introduction active engine hood | project team
- - Engineering conception | topology optimization | design | prototyping | testing
 - **Process simulation**
- 3 calibration | model setup | simulation | compensation | validation
- 4
- Conclusion outlook | award

Conclusion: Process simulation

- Significant reduction of the initial distortion up to 80% by AM simulation
- Further improved results possible by additional simulation iterations (Only one in project)
- No necessity for building expensive and time consuming trial parts
- No necessity for expensive compensation of distortion based on optical measurements
- AM part can already be within the given tolerances after the first build job

Manufacturing time and costs are reduced dramatically

Conclusion: Engineering

- Safety and lightweight construction combined in a distortion- and production-optimized design
- Exploiting the full potential of additive manufacturing
 - Rethinking applications from scratch
 - Solving problems and generating added value
 - Apply to visible components in order to be recognizable to end customers

YouTube

TEILEN

ENG: https://www.youtube.com/watch?v=n1tm-fwFmO4 DE: https://www.youtube.com/watch?v=2z-3vqAKkBU

Folie 27

MSC Software Company

voestalpine

ONE STEP AHEAD.

sebastian.fluegel@edag.de