

Fakultät für Maschinenbau Institut für Werkzeugmaschinen und Produktionsprozesse Professur Werkzeugmaschinen und Umformtechnik

Prof. Dr.-Ing. habil. Prof. E. h. Dr.-Ing. E. h. mult. Dr. h. c. mult. Reimund Neugebauer Prof. Dr.-Ing. Matthias Putz

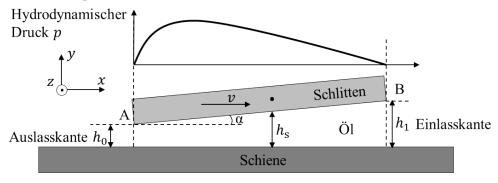
Untersuchung der Flüssigkeitsreibung der hydrodynamischen Linearführung bei hohen Geschwindigkeiten bis 100m/min

M.Sc. Yingying Zhang

Institut für Werkzeugmaschinen und Produktionsprozesse
TU Chemnitz

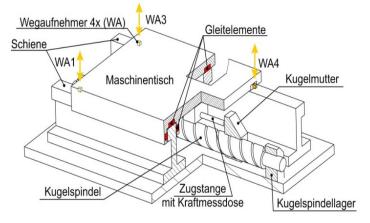
yingying.zhang@mb.tu-chemnitz.de +49 (0)371 531-31026

- Motivation
- > Aufbau des dynamischen Modells
- > Anpassung des Modells
- > Vergleich zwischen Experiment und Simulation
- > Ausblick



Grundlage der Technik

$$\frac{\partial}{\partial x} \left[\frac{y^3(x,z)}{\eta} \frac{\partial p}{\partial x} \right] + \frac{\partial}{\partial z} \left[\frac{y^3(x,z)}{\eta} \frac{\partial p}{\partial z} \right] = 6v \frac{\partial y(x,z)}{\partial x} + 12 \frac{\partial y(x,z)}{\partial t}$$

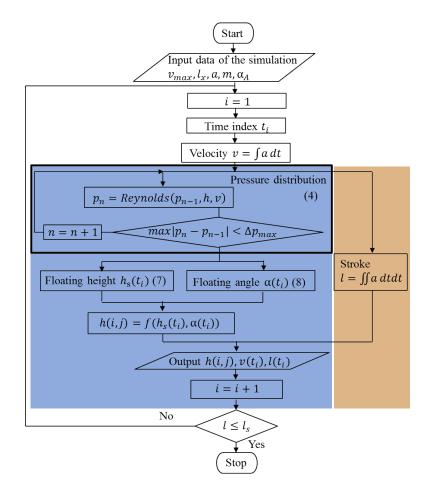

Hydrodynamischer Druck p

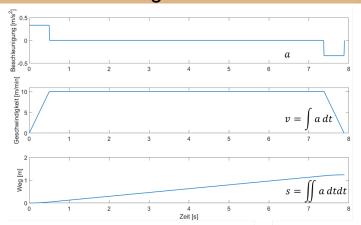
- Aufschwimmhöhe h_s
- Aufschwimmwinkel α
- lacktriangle Geschwindigkeit v
- Schmieröl
- Kontaktoberfläche

> Ziele des Projektes

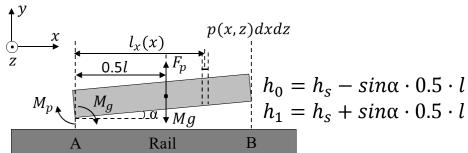
- Reduzierung der Flüssigkeitsreibung
- Reduzierung der Kippung
- Optimierung der Gestaltung der Führungsfläche

Messsystem des Versuchstandes



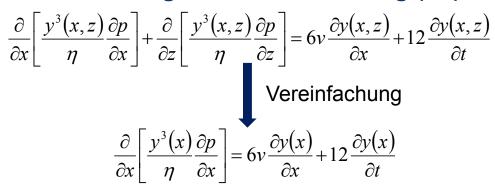


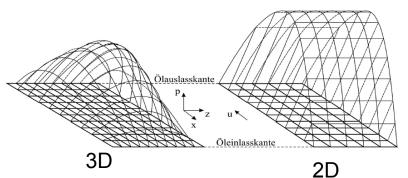
Aufbauprinzip des dynamischen Modells (Zeitdiskretes Modell)

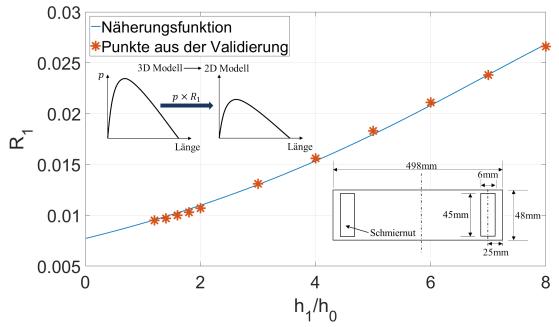

> Flussdiagramm

Verlauf der Beschleunigung, Geschwindigkeit und des Hubs des Wegs

Newtonsches Gesetz: Aufschwimmhöhe h_s Drehimpulssatz: Aufschwimmwinkel α

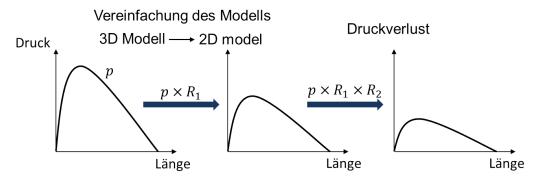




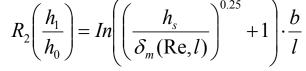


Berechnung der Druckverteilung (R1)

$$R_1\left(\frac{h_1}{h_0}\right) = A * e^{B*\frac{h_1}{h_0}} + C * e^{D*\frac{h_1}{h_0}}$$


- Geometrie der Kontaktoberfläche
- Keilverhältnis

Berechnung der Druckverteilung (R2)

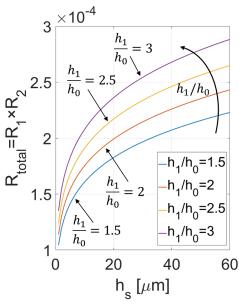

Randbedingungen der Reynolds'schen Differentialgleichung

- Haftbedingung
- Glatte Oberfläche
- Newtonsche Flüssigkeit
- Laminare Strömung

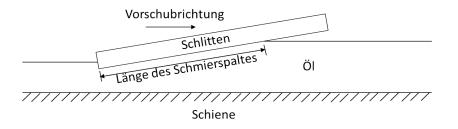
Idee basiert auf

- Druckverlust im Rohrsystem
- Grenzschichttheorie
- Hydrodynamisches Gleitlager

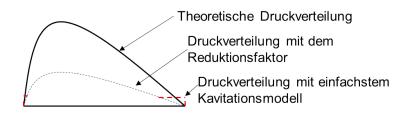
Abhängig von


- Grenzschichtdicke
- Reynolds-Zahl
- Geometrie der Kontaktoberfläche

Reduktionsfaktoren bei 10m/min (R1× R2)



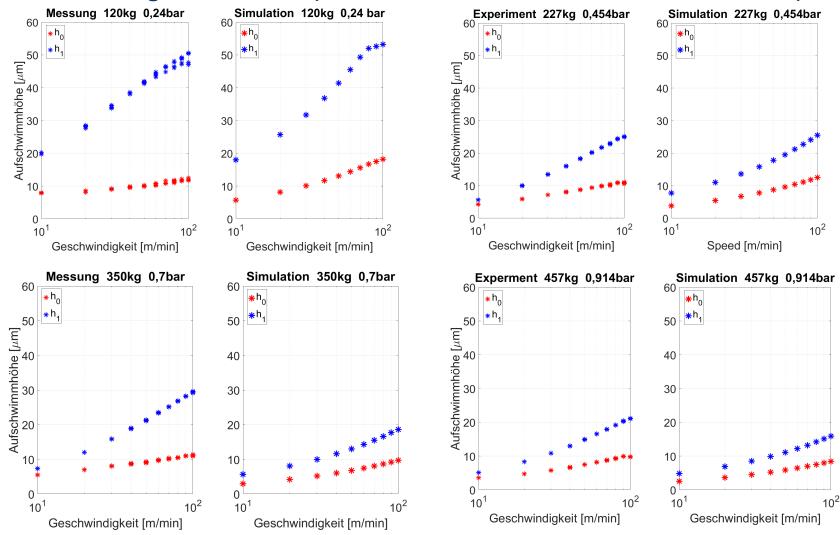
Wert der Reduktionsfaktoren verändert sich mit


- Aufschwimmhöhe
- Aufschwimmwinkel
- Geschwindigkeit

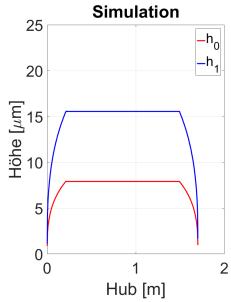
Andere Ansätze

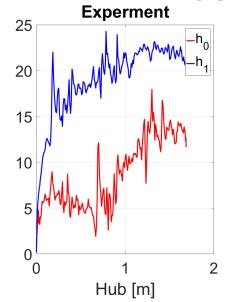
Zwischenschicht

Kavitation



Validierung des Modells (Durchschnittliches Aufschwimmverhalten)





> Aufschwimmverhalten in der Abhängigkeit von dem Hub (50m/min, 0.24bar)

Begrenzungen des Modells:

- Erreichen des stabilen Zustandes bei der konstanten Geschwindigkeit
- Beschreiben nur des durchschnittlichen Aufschwimmverhaltens

Verbesserung des Modells

Schmierverfahren

Pumpen des Öls durch die Schmiernuten

Durchführung der Doppelhübe

Anfangen der Messung

Aufbau einer Ölschicht auf der Schiene

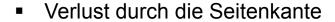
Massenerhaltungsansatz

Beschränktes einfließende Volumen des Öls im bestimmten Zeitraum

 V_{S}

$$V_{ein} = \int vbh_{\ddot{0}l}dt$$

Ölhöhe auf der Schiene in der Abhängigkeit von

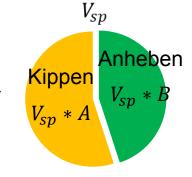

- Geschwindigkeit des Hubs
- Gewicht des Schlittens
- Viskosität des Öls

Verteilung des Öls

 V_h

 V_{sp}

 V_{ein}


$$V_{s} = V_{ein} \cdot \frac{h_1 - h_0}{h_1}$$

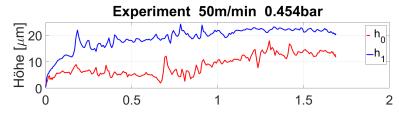
Verlust durch die hintere Kante

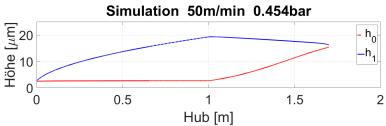
$$V_h = \int \mathrm{vbh_0} \mathrm{dt}$$

Gespeichertes Volumen

$$V_{sp} = V_{ein} - V_h - V_s$$

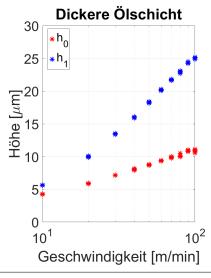
Durchflussbeiwerte

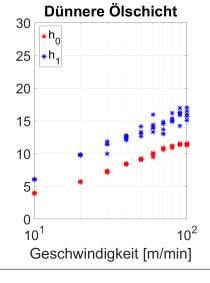




Vergleich zwischen Experiment und Simulation

Instabiles Aufschwimmverhalten





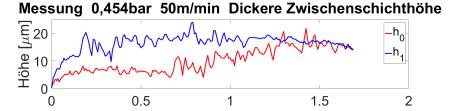
Gleichgewichtsbedingungen

- Kraft
- Moment
- Volumen der Flüssigkeit

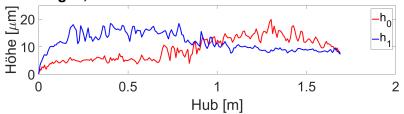
Wiederholungsgenauigkeit (0.454bar)

Dünnere Zwischenschichthöhe

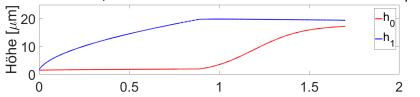
- Niedrigere Wiederholungsgenauigkeit
- Kleinere Aufschwimmhöhe
- Schwächere Kippung

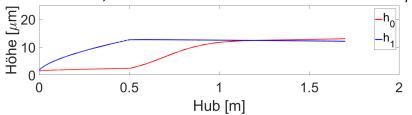


Vergleich zwischen Experiment und Simulation

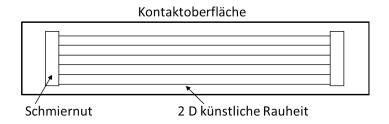

Auswirkung der Zwischenschichthöhe

Experiment

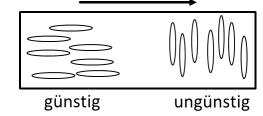

Simulation



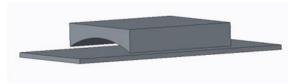
Simulation 0,454bar 50m/min Zwischenschichthöhe 25 μ m



> Untersuchung der Rauheit der Kontaktoberfläche


Auswirkungen der Rauheit bei der Flüssigkeitsreibung und Verbesserung der Berechnungsformel

Richtung der Strömung


- Druckverlust im Schmierspalt
- Durchflussbeiwert
- Flüssigkeitsreibung
 - Variable A

- Reduzierung der Flüssigkeitsreibung
- Reduzierung der Kippung

Variable B

konkaver Schmierkeil

Fakultät für Maschinenbau Institut für Werkzeugmaschinen und Produktionsprozesse Professur Werkzeugmaschinen und Umformtechnik

Prof. Dr.-Ing. habil. Prof. E. h. Dr.-Ing. E. h. mult. Dr. h. c. mult. Reimund Neugebauer Prof. Dr.-Ing. Matthias Putz

Vielen Dank für Ihre Aufmerksamkeit!

M.Sc. Yingying Zhang

Institut für Werkzeugmaschinen und Produktionsprozesse TU Chemnitz

yingying.zhang@mb.tu-chemnitz.de +49 (0)371 531-31026

