Flagship Project in the Caribbean – PV Hybrid System on the Island of St. Eustatius

Overview

- 1 Introduction: PV Hybrid System Technology
- 2 St. Eustatius Flagship Project in the Carribean
- 3 Second Phase Finally Switching the Diesel off
- 4 Summary and Conclusion

Hybrid Systems Provide Security of Supply

At a Glance

- 1 Introduction: PV Hybrid System Technology
- 2 St. Eustatius Flagship Project in the Carribean
- 3 Second Phase Finally Switching the Diesel off
- 4 Summary and Conclusion

Showcase: MW-Scale Hybrid Power plant in St. Eustatius

Up to 88 % of the island's power demand by PV!

4 MW installed genset capacity in 6 units

4,15 MWp Photovoltaics

5.4 MW (5,9 MWh) Li-lon energy storage

SMA Solar Technology AG

V. Wachenfeld – Flagship Project St. Eustatius – 26.04.2018

Typical Day in the Caribbean: Rapidly Moving Clouds

System Operation With Battery Real Data From April 3rd, 2016

- > Required average genset capacity reduced to approx. 250 kW during PV generation hours
- > Spinning reserve requirements mostly covered by the battery!
 - ⇒ Diesel gensets only to cover the gap between load and current generation plus battery capacity
- > PV generation curtailment reduced to the minimum

At a Glance

- 1 Introduction: PV Hybrid System Technology
- 2 St. Eustatius Flagship Project in the Carribean
- **3** Second Phase Finally Switching the Diesel off
- 4 Summary and Conclusion

Visual Comparison Phase 1 vs Phase 2

Solar and Storage in Statia: Technical Overview Phase 2

GRID FORMING BATTERY INVERTERS

Day operation without Diesel Generators (Diesel-Off-Mode)

Full redundancy for generator operation (large UPS in Diesel-On-Mode)

- Voltage source
- Frequency regulation
- Spinning Reserve Provision
- Synchronisation Diesel On-Mode/ Diesel Off-Mode

St. Eustatius II

Estimated fuel savings	1 728 000 liters/a
Solar Energy Produced (net)	6,4 GWh /a
CO2 savings	4,561 to CO ² /a
Used PV energy	6 494 547 kWh
Solar energy fraction	46%

SMA

Operational Concept: Dynamic Genset Shutdown by Fuel Save Control

Solar and Storage in Statia – Typical Day "Diesel Off Mode"

Frequency Stability in Diesel Off Mode

Recording on 31.10.2017 from 11.00 am to 12.05pm during step load tests

> Result:

Frequency deviation during load steps less than 10 mHz!!

At a Glance

- 1 Introduction: PV Hybrid System Technology
- 2 St. Eustatius Flagship Project in the Carribean
- 3 Second Phase Finally Switching the Diesel off
- 4 Summary and Conclusion

Increased PV Penetration Achievements on ST. EUSTATIUS

SMA

- > Automatic Genset Control and transition to Diesel Off-Mode and Diesel On-Mode
- Integration of all components and existing genset infrastructure into control scheme
- > Co-generation with Diesel in Diesel-On Mode
- Voltage and frequency source in hot-standby for uninterrupted power supply also at night (UPS function)
- > 3 layer built-in redundancy concept
- > Short circuit clearance in 120ms
- > European grid quality (± 0.005Hz deviation)

Award Winning Project

