Thermoplastischer Leichtbau in Serie Thermoplastic Lightweight Design in volume Production

Dr.-Ing. Norbert Müller Center for Lightweight Composite Technologies

Content

- Thermoplastic tapes based on woven fabrics (organic sheet)
- Tapes with continuous fiber reinforcement and thermoplastic matrix
- Pick-&-place approach for the stacking; stacking unit
- Consolidation with heating-&-cooling; consolidation unit
- Single-step and multi-step approach for the shaping and functionalization
- Summary

Trends in Composites for Automotive Applications Flashlights

Technologies and Parts

- Organic sheet and HP-RTM in series production
- SMC und Carbon-SMC
- Foam injection molding widely used
- Specific applications in focus: leaf springs, roofs, door modules ..

Manufacturing Technology

- Fully automated productions cells
- Multi step processes

Materials / Semi finished Goods

- Pultruded profiles
- New flat composites materials, Cross-Ply
- Thermoplastic UD-Tapes

Driving Boundaries

- Electric Vehicles
- Circular Economy Recyclability

Center for Lightweight Composite Technologies

Can Composites enable new large-scale Substitutions?

Bringing injection molding and composite manufacturing together

Examples – Systems and Solutions for ...

Composites based on Curing Resins (Thermosets)

Composites based on Heating, Melting and Cooling (Thermoplastics)

ENGEL v-duo Technology for Composite Presses

Press for HP-RTM (eg.) with vertical closing direction

ENGEL v-duo

Clamp unit of an injection molding machine with horizontal closing direction

ENGEL duo

Tonnage 350 – 5.500 tons

Tonnage 400 – 3.600 tons

ENGEL v-duo Cushion Pad and Platen Parallelism Control

- Ultrasonic sensor on each tie bar
- Platen parallelism 0.2 mm
- Parallellism on the Part 0.05 mm (with parallelism control)
- Actice correction of part wall thickness
- Coining and precision opening

Thermoplastic based Composite Technologies Woven Fabric in Thermplastic Matix

Organomelt Established Technology for Organo Sheet and Cross-Ply Materials

- Fully automated handling of blanks and parts
- Precise regulation of the infrared heating process
- Control of IR-heating, handling, and molding with ENGEL CC300

Processing of Organic Sheets and Tape Blanks

Employing a horizontal Clamping Unit

Articulated Robot (Hot Handling)

- Placement of the organic sheet or the tape blank in the infrared oven
- Insertion of the heated material in the mold (hot handling)
- Removal of the finished part

Processing Technology for large scale Production

Thermopl. Composites and Tapes

- Rapid one-sided heating of thin composite materials
- Fast handling between IR oven and mold
- Shaping of the composite and molding of any functional elements in one shot

From woven Fabric to Tape-based Composites

Tablet cover with woven fabric organic sheet, decorative film layer, and injection molded outer edges

www.cfrt.covestro.com - CF-Tape

Processing of Tapes with unidirectional Fibers Load optimized Composite Structures

Components from Thermoplastic Tapes Robot Lever

Tape Processing Modules of a Standard Manufacturing Sequence

Stacking of Tapes

Stack Consolidation Infrared heating

Pick-&-Place Approach for Tape Processing

- Net-shape stacking
- Flat stack
- Position and gap control
- Materials mix
- No specific tape width

Pick-&-Place Approach

Net-shape tape stacks bevorhand of consolidation

Position an Gap Control Efficient and precise Pick-&-Place Technology

High stacking rate

 \rightarrow

- High stacking precision
 - Utilization of an optical measurement system

Tape Stacking Unit

- Pick-&-place approach
- Net-shape stacking
- Optical measuring device
- Correction of position and angular orientation
- Fixation with heated pins

Consolidation Unit – in Cooperation with FILL

- Consolidation (heating and cooling) between thin steel platens exposing the blank's outer shape
- Separate stations for loading/unloading, heating and cooling
- Equipment for manufacturing of a finished blank per one minute
- Net-shape consolidation
- Different thickness area possible

→ Loading → Heating → Cooling → Unloading

ENGEL Tape Processing Technology Consolidation Unit

Working principle

Consolidation quality

porosity analysis with CT → Porosity << 1%

Tape Processing From Tape to Thermoplastic Composite Part

One-step vs. Two-step Possible Issues with Tape Processing

- Fibers and matrix might be pushed in flow channels during shaping of the blank
- Reduction of flow channel crosssection
- Compelte filling of the flow channels
- \rightarrow Incomplete filling during injection

Processing Routes for thermoplastic Tape

cut after shaping

Aspects

- Surface appearance
- Degree of draping and shaping
- Precision of outer contour
- Demands on fiber orientation
- Definite transition from composite fraction to injection molding fraction

Automotive Composite Applications

Medium to large volume Production

- Door modules
- Rear walls
- Center tunnel
- Seat pan
- Instrument panel carrier
- Engine hood
- Trunk cover
- Trunk door
- Composite roof
- Roof beam
- Brake pedal
- B-pillar inner
- .

Test geometry for organic sheet components and tape-based components

Automotive Composite Applications

Medium to large volume Production

- Door modules
- Rear walls
- Center tunnel
- Seat pan
- Instrument panel carrier
- Engine hood
- Trunk cover
- Trunk door
- Composite roof
- Roof beam
- Brake pedal
- B-pillar inner

Laboratory Equipment Center for Lightweight Composite Technologies - Linz

Laboratory machine, ENGEL v-duo 3550/1700

in situ reactive unit

processing machine for caprolactam

ENGEL v-duo 3550/1700

Clamping force 17,000 kN max. clamping surface 1,750 x 2,170 mm incl. injection unit incl. articulated-arm robot (7 axes)

ENGEL v-duo 1560/700

Clamping force 7,000 kN max. clamping surface 1,000 x 1,440 mm incl. injection unit incl. articulated-arm robot (6 axes)

Summary

- Utilization of thermoplastic tapes manufacturing for load optimized composite parts
- Net-shape stacking
 - Minimization of scrap rate
 - No cutting operation after consolidation
- Reasonable Limitation of stacking operation
 - Stacking and consolidation in the cycle time of the injection molding machine
- Consideration of multi-step approach for shaping and functionalization

Tape stacking unit – laboratory setup

Thank you!

ENGEL AUSTRIA GmbH Center for Lightweight Composite Technologies

Dr.-Ing. Norbert Müller

Tel. +43 50 620 4682 norbert.mueller@engel.at