

Dr. Joseph Reger, Fujitsu Fellow CTO Fujitsu CE & EMEIA

2019-04-03, German-Japanese Economic Forum, Hannover

Why Quantum Computing

Source: Provided by Quantum Computing Industry Network based on WEF Davos

Why does Quantum Computing work?

Quantum Computing uses quantum-mechanical phenomena

Quantum Superposition

In the quantum space you can be in all possible states at the same time. You can be both '0' and '1' at the same time.

n qubits $\sim 2^n$ bits (classic)

"0" or "1" DIGITAL STATE "0" and "1" QUANTUM STATE

Quantum Tunneling

A process in which a particle passes through a barrier that it classically cannot surmount.

3

Quantum Entanglement

Is a state in which 2 particles are connected and tied together irrespective of the distance between them.

Types of Quantum Computing

Quantum Computing Technology

Quantum Annealing

- Using quantum physics to identify minimum energy points thru math. algorithms
- Targeted to solve Combinatorial Optimization Problems

Quantum Gate System

- Perform calculations by manipulating quantum evolution via application of gates
- Targeted to solve problems incl. cryptography and search

Challenges

Stability

Complex infrastructure and cost

Accuracy

Readiness

Combinatorial Optimization

Investment portfolio analysis of 500 stocks:
1.6×10¹⁵⁰ combinations

10 jobs, 7 machines: 300s (standard server) Requirement: Real time

Job shop scheduling
Workforce optimization
Part placement
Design optimization
Battery optimization
Ride hailing / mobility services

Public Sector Chemical & Finance Material Automotive Logistics Manufacturing

Comparison of molecules with 50 atoms: 10⁴⁸ combinations

Minimize congestion: 5 pairs of start/destination points deals with 10¹⁰⁰ possibilities

Real World Example:

Robot Positioning Optimization

Which roundtrip / welding direction to choose?

Robots "visit" seam location & seam can be drawn in 2 directions

$$2^{n-1}(n-1)!$$
 possibilities (n = number of seams)

n	2	7	10	22	64
$2^{n-1}(n-1)!$	2	46,080	1.86 x 10 ⁸	1.07 x 10 ²⁶	1,83 x 10 ¹⁰⁶

A Bridge to Quantum Computing

Built on digital circuit based architecture, inspired by quantum computing

Parallel Speed up

Scale of 8,192 bits, parallel processing

Increased probability to escape local minima

9

Full connectivity through the 8,192 bit scale with 64-bit precision

Robot Positioning Optimization

n	2	7	10	22	64
$2^{n-1}(n-1)!$	2	46080	1.86 x 10 ⁸	1.07 x 10 ²⁶	1,83 x 10 ¹⁰⁶

A Bridge to Quantum Computing

New digital circuit architecture inspired by quantum phenomena

10

Eco-systems / Skills required

Engagements

- Process improvement: Can I solve my problem faster / more often / accurately... ?
- Disruption: How will my business change through continuous / real time optimization ?

Solve it

11

Gate Computing

Algorithm
Error correction

Algorithm development

A Bridge to Quantum Computing

shaping tomorrow with you