

Predictive Maintenance: From Signal to Business Case

D. Tilch | LHR IZM

Agenda

- 1. Intro to ZF
- **2.** Predictive Maintenance: Use Cases & Business Cases
- **3.** Technical Essentials

01Intro to ZF

ZF Corporation Facts and Figures 2017

146,148 Employees

230 Locations Worldwide

€36.4 bn Sales

€2.3 bn Adjusted EBIT

€2.2 bn
Research & Development
Expenses

€1.4 bn
Investment in Property,
Plant and Equipment

Intelligent Mechanical Systems Megatrends

EFFICIENCY

Zero Emissions, zero unplanned Downtime

- Increasing efficiency thanks to electrification and networking
- Increasing system reliability with monitoring and maintenance services
- New ZF division E-Mobility

SAFETY

Operational Safety

- Protection for passengers and pedestrians
- Intelligent systems independently identify hazardous situations and react by performing autonomous braking and evasive maneuvers

AUTOMATED DRIVING

Autonomous Operation

- ZF as pacemaker and system supplier for automated driving
- Development of innovative assistance systems

ZF, Division Industrial Technology

02

Predictive Maintenance: Use Cases & Business Cases

The general Use Case of Predictive Maintenance

Collect, analyze and compare field and product related data for:

- Automated detection of anomalies
- Remaining lifetime calculations
- Coordinate demand oriented service

OEM and operator benefits:

- -> Reduction of operational costs:
- Enhancing operations
 - reduced stress and wear
 - extended life cycles
- Optimizing the system performance
- Increase system reliability

The technical Scope of Predictive Maintenance A broad Field

Business Development PM for Industrial Products Classical Approach

Value Proposition Canvas

Offerings overview

Most common product attributes:

Tasks: Sustainably generate a revenue

Gain: Low invest & operating costs

Pains: Unplanned downtime

Pain Relievers: High reliability and

performance

Gain Creators: Risk sharing (\$)

Business Model Canvas

Customer Journey

=> Services & optimized products

Paradigm Shifts

- From single units to fleet operation
- Autonomous operation requires self diagnostics
- Seamless mobility need reliable communication
- System partnerships with risk sharing

ZF's Services powered by Analytics Optimized Spare Parts Supply

Performance Management System ZF ProVID

Performance management system for the entire driveline.

ZF ProVID: monitoring of the complete drivetrain, analysis and evaluation by ZF owned algorithms, transfer via cloud solution and documentation on specific dashboard

- Reduced operating costs by
 - Monitoring of bearings, teeth and oil quality
 - reduced oil analyses and changes
 - early detection of potential failures
- Reduction of total costs of ownership (TCO) by
 - specific preventive maintenance actions
- Reduction of downtimes by
 - Scheduling of maintenance works as needed
- Prevention of secondary damages
- Reduction of repair costs
- Availability of all status reports
 - basis for audit documentation of service history

Monitoring of Truck Drive Trains for large Fleets

03 Technical Essentials

Digital Twins in a Product Lifecycle Loop

- Simulation based design
- Product optimization based on operational data
- Reduced time-to-market

- Defined and documented processes
- High flexibility
- Digital birth certificate
- Full component traceability

- Operation monitoring
- Predictive Maintenance
- Flexible service offerings

Combining predictive and detective analytics for a complete monitoring system

A complete monitoring concept combines symptom and lifetime based models

- The symptom model checks for existing damages in an early stage
- The lifetime model provide predictive analysis and enables damage prevention

Cloud-based Performance Management, Park Overview

Critical Drive Train Dynamics

Load based Lifetime Calculation

Basic Data Communication Schemes

IoT / Edge Device

Cloud-to-Cloud

Smartphone as gateway

Cloud environments and collaboration

Cloud Collaboration with external Partners Load based lifetime calculation with bearing manuf. Schaeffler

Predictive Maintenance A broad Field of Opportunities

Thank you for your attention

Any questions?

