Contactless inductive transmission systems for high power applications

Daniel Kürschner

KONTENDA GmbH
Werner-Heisenberg-Str. 1
39106 Magdeburg

Web: http://www.kontenda.de
Table of contents

1. Introduction
2. Dimensioning inductive systems with air gap
3. EMC
4. Power electronics
5. Combined energy- and data transmission
6. Applications
7. Summary
KONTENDA GmbH – The company

- Formation on April, 24th 2007 in Magdeburg
- Continuation of the network activity
- Share holders – active members of the KONTENDA - network
- Development, production, and distribution of products and solutions of the contactless power- and data transmission and involving services
- First products in 2008

Company's founder of the KONTENDA GmbH in front of the Hundertwasser Building
1. Introduction – Benefits of contactless energy transmission

- Contactless technology prevents:
 - Conductor rails
 - Sliding contacts
 - Trailing cables
 - Slip rings
 - Plug connectors

- Increasing reliability / Reducing maintenance:
 - No wear and tear on electrical contacts
 - No cable breaks
 - No contact resistance

- Increasing safety:
 - No spark formation
 - Electrical isolation

- Simplified assembling
1. Introduction – Magnetic arrangements

Energy transmission on movable devices (linear)
Example: E / ELP-cores

Energy transmission on rotating devices
Example: Pot cores with additional data coil (PCB) in aluminium housing

Energy transmission on rotating devices (with higher positioning tolerance)
Example: Flat ferrite elements with additional data coil (PCB)

10 .. 100 mm

50 .. 150 mm

100 .. 210 mm
2. Dimension inductive systems with air gap – Determining the coil parameters

- Transformer principle
- Description by T-equivalent circuit
- Determining the T-parameters by FEA

main inductance

\[L_h = N_1^2 \cdot \frac{\Phi_2}{i_1} \]

primary leakage inductance

\[L_{1\sigma} = N_1^2 \cdot \frac{\Phi_1 - \Phi_2}{i_1} \]

secondary leakage inductance

\[L_{2\sigma} = N_2^2 \cdot \frac{\Phi_2 - \Phi_1}{i_2} \]
2. Dimension inductive systems with air gap

- Important characteristics:
 - Transferable electric power, efficiency (power loss)
 - Number of consumers
 - Positioning tolerance
 - Magnetic field emission
 - Size, weight, costs

- Aim
 - Output power \uparrow
 - Efficiency \uparrow
 - Power loss \downarrow

- Reached by
 - Using higher transmission frequencies
 - Using of ferrite materials
 - Resonant switching operation ZCS
 - Optimisation of the coil design
3. EMC - Subdivisions and device classification

- **EMC**
 - Emission
 - Radiation
 - (f=30 MHz..1 GHz, power electronics on primary side)
 - Conducted disturbance
 - (f<30 MHz, power electronics on primary side)
 - Noise immunity
 - Measurement methods and equipment
 - Magnetic field
 - (f<30 MHz, secondary side)
3. EMC – Emission measurements

- Measurements at flat ferrite systems (P=1 kW, magnetic field probe)
- Limit values* are kept at a distance of 10 cm (x-dir) to the transmission system (15 cm at displacement)

*reference limit values of the BGV B11 and the ICNIRP guidelines for full-time exposition
4. Power electronics – Modular power electronic components

Enables the simulation of the whole circuit:

- Filter dimensioning
- Static behaviour (conduction losses)
- Dynamic behaviour (estimate voltage peaks and switching losses)
- Control techniques of the inverter topologies
- Controlling the output voltage
4. Power electronics – Developed inverter prototypes

- Half-bridge inverter for single phase connection, 1 kW
- Full-bridge inverter for single phase connection, 2 kW
- Full-bridge inverter for automotive (12V), 400 W
5. Combined energy- and data transmission

Apart from conventional wireless techniques:
-> Inductive data transmission (magnetic near field coupling)

- Geometrical and frequency bandwidth isolation
- Applications
 - Data transmission (bidirectional) for control processes
 - Consumer identification (copy protection, similar RFID-technology)
 - Position detection of the secondary device
6. Applications – Stranding machines

Technical data

- **Coil configuration:** axis-symmetric
- **Input:** AC 230 V, 50 Hz
- **Output power:** 2 kW
- **Air gap:** 28 mm
- **Efficiency:** > 90 %
- **Data transmission:** inductive
 - 115 kBaud

Sensors / actors on the secondary side:
- 4 Initiators
- 1 Ultrasonic sensor
- 2 Three-phase drives
6. Applications – Power supply on rotating devices for sensor- and actor-modules

Technical data

- **Coil configuration:** axis-symmetric
- **Output power:** 60 W
- **Air gap:** 5 mm
- **Horizontal tolerance:** 1 mm
- **Transmission frequency:** 100 kHz
- **Total efficiency:** >85 %
- **Data transmission:** 115 kBaud, half duplex
- **Safety class:** IP 64

Distributor:

KONTENDA GmbH
7. Summary

- Complex system / new demands on …
 - Magnetic transmission system
 - Power electronics
 - Control technique
 - Combined energy and data transmission

- Design of the entire system by means of …
 - Field simulation (EM FEA)
 - SPICE
 - Analytical expressions (transfer function)
 - Experimental setup (laboratory)
 - Norm conditions / regulation (safety, EMC)