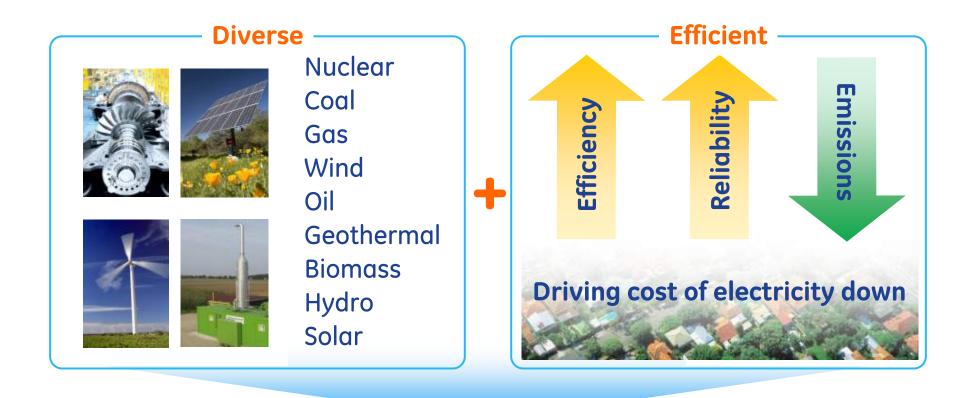
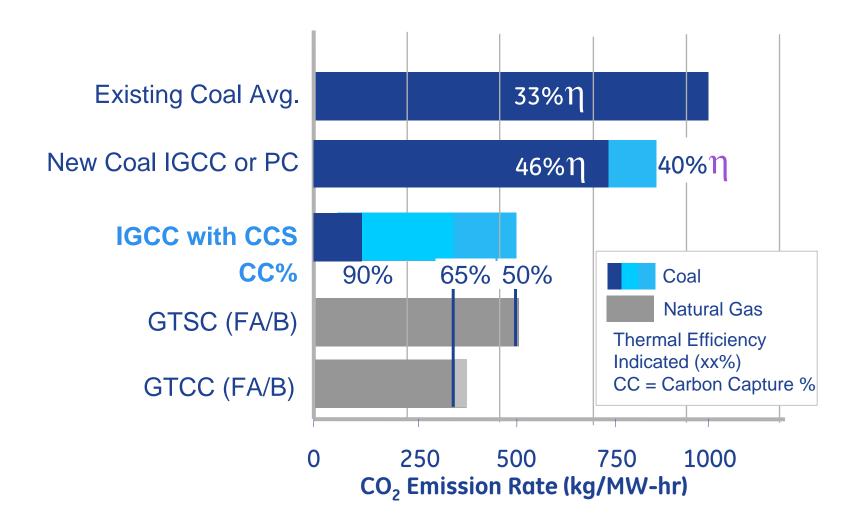
GE Energy

IGCC & CCS Hydrogen Fueled Gas Turbines

Marcus Scholz Klaus Payrhuber


April 2009

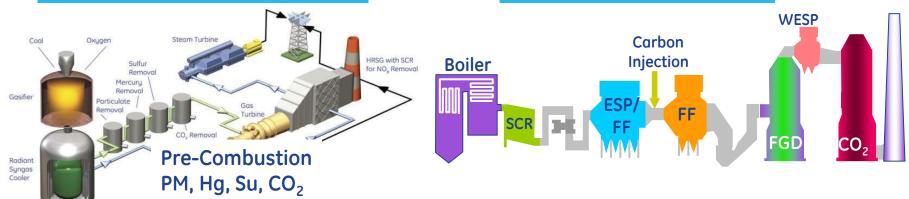
©Copyright 2008 General Electric Company


Global power generation requirements

Affordable, reliable & environmentally responsible

Carbon Footprints of Fossil Power

Technology Readiness for CCS


Process	Description Oxidant		Status/Avoided Cost
Pre-combustion Capture - IGCC	Shift & CO ₂ Scrub H ₂ gas turbine	O ₂ partial oxidation Air post combust	Ready for deployment - \$32/ton ¹
Post-Combustion Capture - Amine	Once-through, open cycle	Air	
Post-Combustion Capture - Ammonia	Refrigerated Flue Gas Chilled Ammonia	Air	Slipstream Pilot
Oxy-combustion	Full CO ₂ recycle CO ₂ working fluid	O ₂	Pilot
Chemical Looping	Me/MeO oxidation/reduction	O ₂	Early Development
AZEP	High temperature membrane O2	O ₂	Early Development

¹ Avoided cost; Ref: Cost and Performance Baseline for Fossil Energy Plants, DOE NETL 2007-1281, May, 2007

IGCC vs. Pulverized Coal for CCS

Pollution Prevention vs. Pollution Control

IGCC

- Gasification cleans fuel small fuel volume
- CO₂ concentration in syngas is high

~15%

without shift

40%-50%

with single shift

~90%

with 2 stage shift

Pulverized Coal

- PC cleans the flue gas
 100 times the gas volume of IGCC
- CO₂ concentration is low
 ~14% with no improvements

Gasification Options

Coal to Liquid

- Syngas + Fischer Tropsch
- Wax + Diesel

Refinery Polygeneration

- Hydrogen
- Steam
- Power

- Heavy Oil
- Asphalt
- Vacuum Residue
- Petroleum Coke
- Coal
- Natural Gas

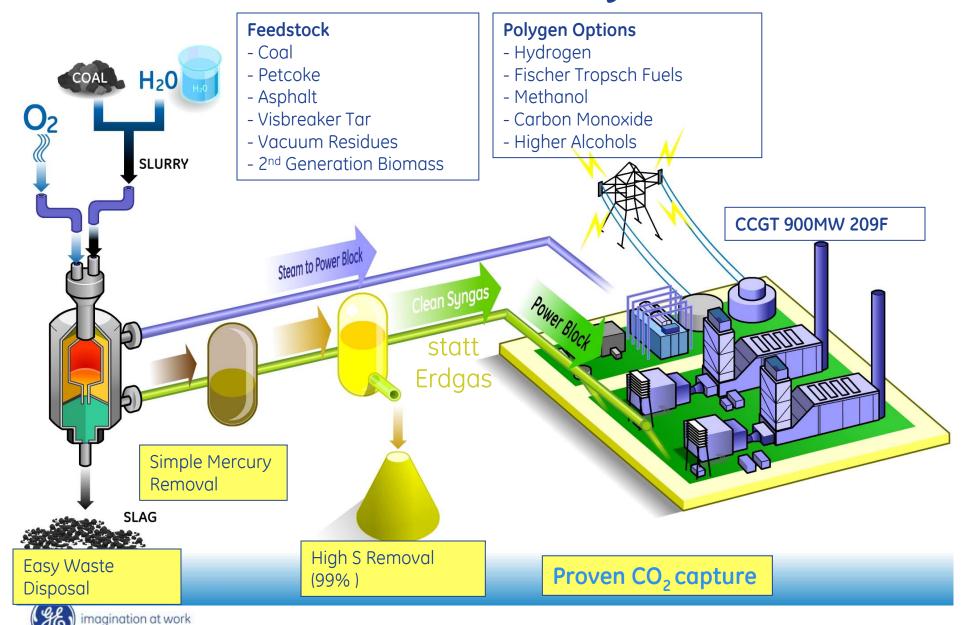
GE's Gasification Technology

Electricity

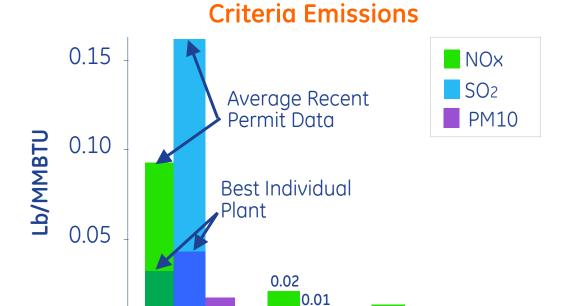
Chemicals

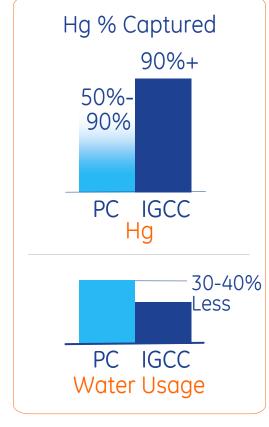
- Ammonia
- Methanol

...since > 50 years!



Substitute Natural Gas


• SNG



IGCC ... Flexible & Env. Friendly

IGCC: Cleaner By Design

applications and publicly reported emissions

NGCC

Source: GE internal data, average of 30 permits granted,

IGCC Benefits - Environmentally Cleaner

• 33% less NOx

IGCC

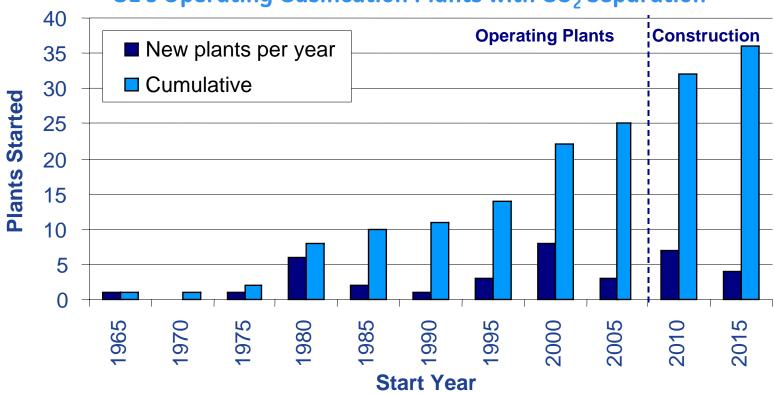
Capability

• 90% + Hg removal

• 75% less SO2

• 30% less water

- 50% less PM10
- CO2 capture ready


0.00

Advanced

PC/SCPC

CO₂ Removal from Syngas (De-Carbonization)

Gasification with CO₂ Capture is over 50 yrs old

- First GE gasification plant with CO₂ removal: Spencer Chemical, 1953
- 33 of 63 gasification plants (12 with solids feedstock)

GE IGCC plant under Construction

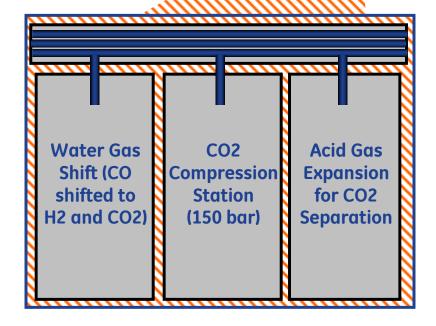
630MW IGCC Plant

- Duke Energy IGCC, Indiana 5 coal
- NTP in 2007, COD in 2012
- Detailed engineering near completion
- Construction on-track
- Core components shipping in 2009
- 7F Syngas turbines ship in 2010

Successful siting & permitting

Sited & permitted next to aging PC facility

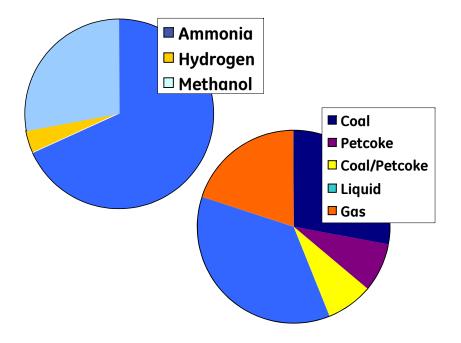
Edwardsport site construction, January 2009


"We have an opportunity to make history with the Edwardsport plant. The facility could very well be one of the cleanest coal-fired power plants in the world. It will produce nearly 10 times as much energy as the existing Edwardsport plant with much less environmental impact." - Jim Turner, President & COO, U.S. Franchised Electric and Gas-Duke Energy

Duke Energy press release, Jan. 25, 2008

Carbon capture ready ... more than a space

Capture ready features


- Designed for now or later addition of "carbon capture island"
- Plot space for AGR expansion, shift unit/s, CO₂ compression
- AGR system already captures CO₂ for recycle ... expandable for future
- No gas turbine hot gas path modification
- NG CO₂ equivalence (50% 65% capture)

IGCC systems proven for carbon capture

33 Gasification Plants Shift+Capture Experience

- Ammonia Plant
- Methanol Process
- Refinery Hydrogen

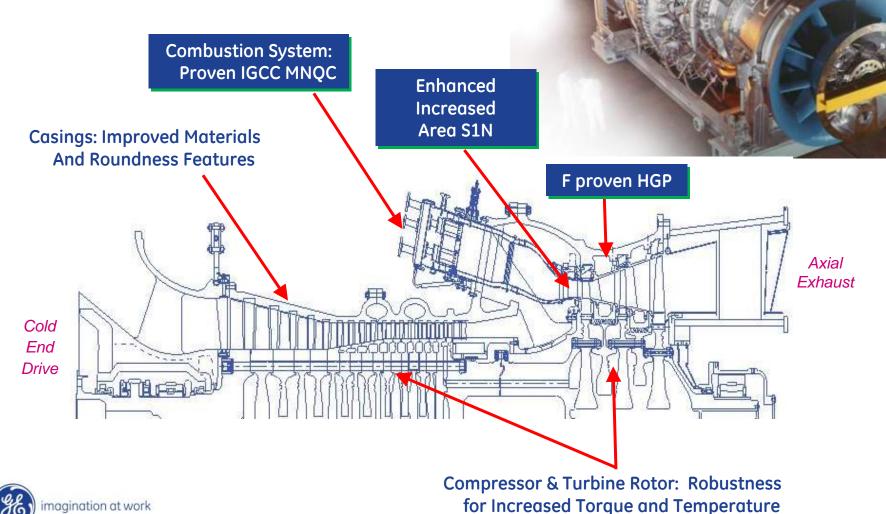
28 GT Turbines high H₂ (>50%) Experience

B/E-class High Hydrogen Experience

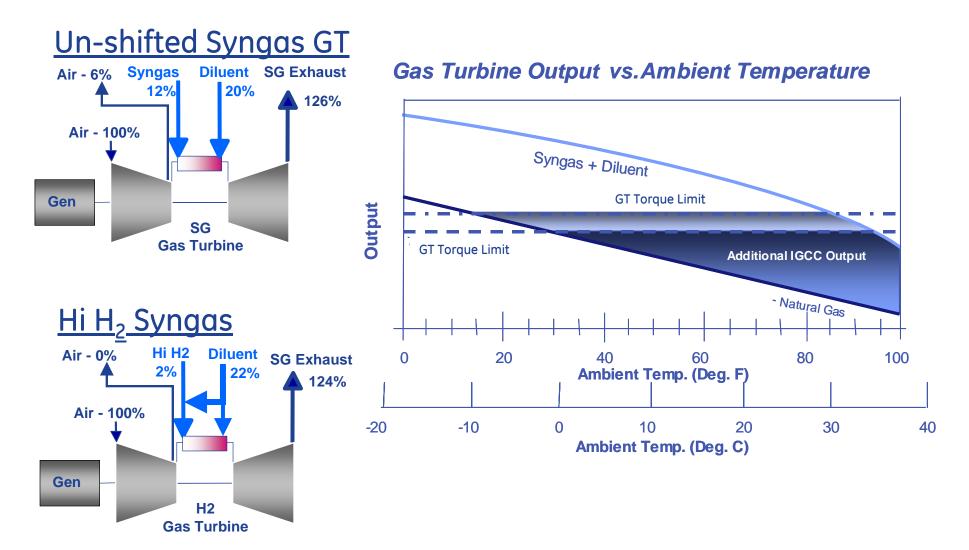
	0.T	N	Final	
Project / Site	GT Model	No. Units	Fuel Gas	Features
Geismer, US	MS6001B	1	PG	up to 80% H2
Refinery, US	MS6001B	1	RFG	12 - 50% H2
Korea	MS6001B	1	PG	up to 95% H2
Tenerife, Spain	MS6001B	1	RFG	~70% H2
Cartagena, Spain	MS6001B	1	RFG	66% H2
San Roque, Spain	MS6001B	2	RFG	70% H2
Antwerpen, Belgium	MS6001B	1	RFG	78% H2
Puertollano, Spain	MS6001B	2	RFG	up to 60% H2
La Coruna, Spain	MS6001B	1	RFG	up to 52% H2
Rotterdam, NL	MS6001B	1	RFG	59% H2
Schwarze Pumpe, GER	MS6001B	1	IGCC	62% H2
Vresova, CZ	MS9001E	2	IGCC	46.8% H2
Fawley, UK	MS9001E	1	RFG	~50% H2
Georgia Gulf, US	MS7001EA	3	Blend	Methane + 50% H2
Milazzo, ITA	MS5001P	1	RFG	30 - 50% H2
Ref., India	MS5001P	1	RFG	50% H2
Paulsboro, US	MS5001P	2	RFG	20 - 60% H2
Ref., Int'l	MS5001P	1	RFG	Propane + 60% H2
Reutgerswerke, US	MS3002J	1	PG	60% H2
NUP	MS3002J	1	TG	~60% H2
Donges, US	GE10	1	RFG	76% H2
Refinery, Jordan	PGT10	1	RFG	82% H2

Fleet Leader
avg. 90% H₂
more than 10 yrs
more than 75,000 hrs

RFG = Refinery Gas, TG = Tail Gas, PG = Process Gas, IGCC = Syngas



F-class Hydrogen Experience


	PSI Wabash	Tampa Polk	Exxon Singapore	Valero Delaware
Turbine	7FA	7FA	2x6FA	2x6FA
H ₂ (% vol)	24.8	37.2	44.5	32.0
CO	39.5	46.6	35.4	49.5
CH ₄	1.5	0.1	0.5	0.1
CO ₂	9.3	13.3	17.9	15.8
N ₂ +Ar	2.3	2.5	1.4	2.2
H ₂ O	22.7	0.3	0.1	0.4
LHV BTU/ft ³	209	253	241	248
kJ/m ³	8,224	9,962	9,477	9,768
T _{fuel} F/C	570/ 300	700/ 371	350/ 177	570/ 299
H ₂ /CO Ratio	0.63	0.80	1.26	0.65
Diluent	Steam	N ₂	Steam	H ₂ O/ N ₂
Equiv BTU/ft 3	150	118	116	150
kJ/m ³	5,910	4,649	4,600	5,910

IGCC 7F/9F Syngas Product Features Summary

Maintaining GT Output on Syngas Fuels

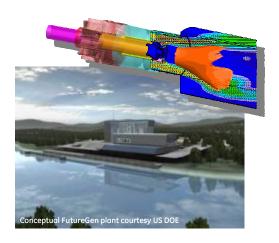
IGCC & CCS Combustion Landscape

Objective Approach Capability

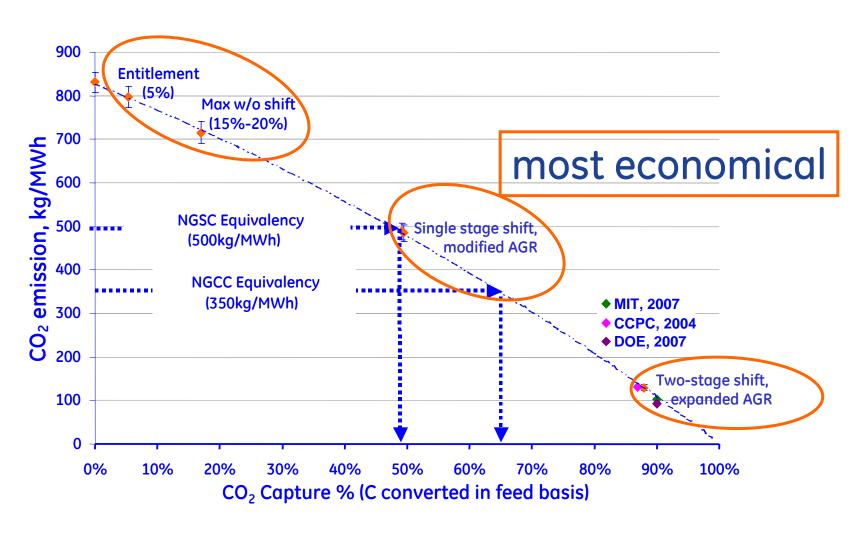
Cleaner
Energy
from
Coal

Today

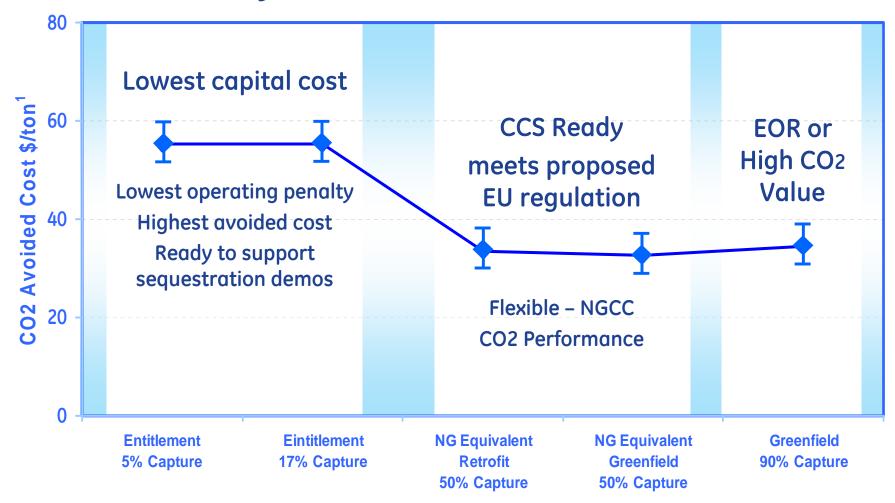
with
Carbon
Capture


- High-H₂ GT fleet
- Successful operation
- Diffusion flame
- Diluent for NOx

Future

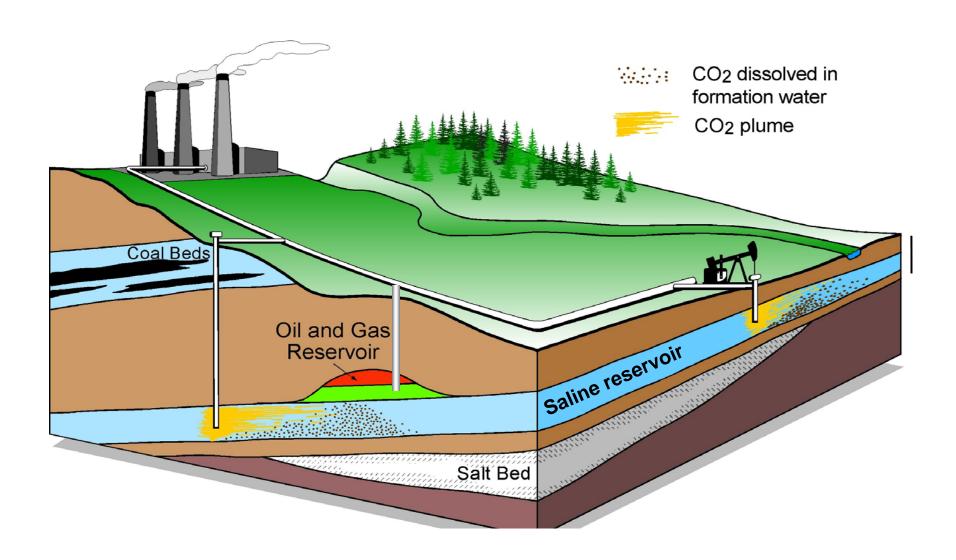

Advanced
Separation
& Gasification
Technology

- Advanced pre-mix combustion
- Membranes O₂, CO₂, H₂
- DOE program


Criteria for Carbon Capture Levels

Fuel Price for COE in \$/mmBTU

IGCC flexibility for carbon value

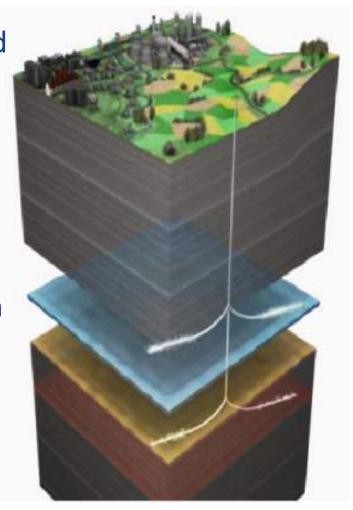

¹ Capture with compression to 150 bar, excludes T&S

CO2 Avoided Cost (\$/ton) =
$$\frac{COE_{cc}(\$/MWh) - COE_{base}(\$/MWh)}{CO2_{base}(ton/MWh) - CO2_{cc}(ton/MWh)}$$

imagination at work

Source: GE Energy internal data

The Technology of CCS



GE and Schlumberger

May 2008: alliance agreement announced

- To accelerate the use of "cleaner coal" technology
- GE: Experience in IGCC, carbon capture
- Schlumberger: Geologic storage expertise and capabilities for site selection, characterization & qualification
- Technical & commercial certainty for moving forward with coal-based power generation

GE Energy

IGCC & CCS Hydrogen Fueled Gas Turbines

Marcus Scholz Klaus Payrhuber

April 2009

©Copyright 2008 General Electric Company