Program Executive Office
Command, Control, Communications, Computers and Intelligence (PEO C4I)

Shipboard Networks

12 June 2008
Kurt Fiscko
Future SATCOM Chief Engineer (PMW 170)

Distribution Statement A: Approved for Public Release. Distribution is Unlimited (4 June 2008)
Achieving Robust Bandwidth Afloat

Desert Storm c.1990
- UHF: "Quad DAMA" (16 2.4 kbps Networks, 25kHz only) Secure Voice/Data Netted Comms
- SHF: Voice at 16 kbps (Command Ship Only)
- INMARSAT (A): SALTS/FAX Official Phones
- 19.2 kbps: "Dual DAMA" (8 2.4 kbps Circuits, 25kHz only) Secure Voice/Data Netted Comms

SATCOM Today
- 48 kbps
 - UHF: 16 kbps Networks
 - EHF MDR: JWICS, SIPRNET, NIPRNET, MDU’s Secure Voice/Data
 - EHF LDR: 24 LDR Channels (8 Primary, 8 Secondary, 8 RCV Only)
- 4.8 kbps – 1.544 Mbps
 - EHF MDR: JWICS, SIPRNET, NIPRNET, MDU’s Secure Voice/Data
- 21.6 kbps
 - EHF LDR: 24 LDR Channels (8 Primary, 8 Secondary, 8 RCV Only)
- 384 kbps – 1.544 Mbps
 - SHF: JWICS, SIPRNET, NIPRNET, VTC, POTS, MSG TRAFFIC, TESS

Typical Terminal Capacity
- GBS (Receive Only): UAV Video, CNN/FOX NEWS Imagery (Secret/Intel), Web Site Replication (classified/unclassified), Immediate File Delivery (IFD)
- INMARSAT (B) HSD: NIPRNET, SIPRNET, JWICS, POTS, FAX
- 64-128 kbps
 - CWSP: JSIPS/JCA, JWICS, SIPRNET, NIPRNET, VTC, POTS, MSG TRAFFIC
- 1.544-2.048 Mbps
 - TV Direct to Sailors (Receive Only): News, Sports, Entertainment, 3 Radio Channels, 1 Data Channel

We’re Not Just Buying More Space Segment...
Current Fleet Terminal Configuration (SatCom)

<table>
<thead>
<tr>
<th>Terminal Type</th>
<th>CV/CVN</th>
<th>AGF/LCC</th>
<th>LHA</th>
<th>LHD</th>
<th>LPD17</th>
<th>LPD</th>
<th>LSD</th>
<th>CG</th>
<th>DDG</th>
<th>DD</th>
<th>FFG</th>
<th>MCM/ MHC</th>
<th>SSN/ SSBN</th>
<th>T-AH</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>USC-38 EHF</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSR-2(A) GBS</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSC-6(V)5 SHF</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>WSC-6(V)7 SHF</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>WSC-6(V)9 SHF</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>WSC-8(V) CWSP</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INMARSAT B</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INMARSAT B HSD</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV-DTS</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSC-3 (UHF)</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Narrowband**
- **Commercial**
- **Wideband**
- **Protected**
- **Broadcast**

HSD: High Speed Data
<table>
<thead>
<tr>
<th>Increment I</th>
<th>Increment II</th>
<th>Increment IIa</th>
<th>Increment IIb</th>
<th>Increment III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Routing, Encryption, & Network Mgmt Based System</td>
<td>Adds Load Balancing / Distribution – static routes with fail over ability</td>
<td>Increases throughput from INC II</td>
<td>Ila Functionality for unit level ships</td>
<td>Even greater throughput (25/50Mbps) in a converged, fully-connected network</td>
</tr>
<tr>
<td>ADNS feeds into Static TDM (Timeplex) Network across a Single RF Path</td>
<td>Traffic Management</td>
<td>Utilizes all wideband SATCOM BW</td>
<td>Increases IP BW utilization from 67% to 100% - due to increase in converged IP circuits</td>
<td>Adds Cipher-text Core Routing – Everything encrypted which a key enabler for 1000 ship Navy</td>
</tr>
<tr>
<td>Supports Email, Web Browsing, File Transfer, & Security Enclaves Baseline Routing, Encryption, & Network Mgmt Based System</td>
<td>Increases IP BW from 13% to 67% over dual RF paths (share JCA BW)</td>
<td>Eliminates dedicated BW for serial voice and VTC – eliminates serial circuits</td>
<td>Eliminates dedicated BW for serial voice</td>
<td>Incorporates IPv4/IPv6 Dual Stack Capability</td>
</tr>
<tr>
<td>Baseline Routing, Encryption, & Network Mgmt Based System</td>
<td>IP Resources management</td>
<td>Eliminates need for TDM (Timeplex) WAN circuits</td>
<td>Leverages install of SCIP-IWF shout box</td>
<td>Enhanced QOS via ADNS QOS Edge Device (AED) through Optimized Edge Routing (OER)</td>
</tr>
<tr>
<td>Automatic Failover and Restoral of RF links</td>
<td>War fighter BW guarantees</td>
<td>Increases IP BW from 13% to 100% - due to increase in converged IP circuit gains</td>
<td>Eliminates need for TDM (Timeplex) WAN circuits</td>
<td>Continues compression</td>
</tr>
<tr>
<td>Application Prioritization (QoS) – added PacketShaper</td>
<td>Application Prioritization (QoS) – added PacketShaper</td>
<td>Increases throughput capacity to 8 Mbps</td>
<td>Adds Compression</td>
<td></td>
</tr>
</tbody>
</table>

ADNS shipboard variants – B, C, D, E, F, G, and SUBS
ADNS shipboard variants – H
ADNS shipboard variants – J
ADNS shipboard variants – K SUBS
ADNS TODAY and TOMORROW

• Today's NAVY WAN:
 ➢ Single Path Access, Best Effort, Limited BW, No Guarantee’s
 ➢ No Network “Insight”, Little Visibility, Limited Decision Making Tools

• The NAVY’s Future WAN will be:
 ➢ Bandwidth Efficient, Possess Multiple Survivable Paths, Contain Quality of Service Guarantee’s and Provide Network Visibility to Remote/Local Users.