Program Executive Office
Command, Control, Communications, Computers and Intelligence (PEO C4I)

Inmarsat Integration with Advanced Digital Networking System (ADNS)

12 June 2008
Karl Gutekunst
Project Manager

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Automated Digital Networking System (ADNS)

ADNS IS THE WIDE AREA NETWORK FOR THE U.S. NAVY.

Deployed Mobile Networking for SHIPS | SUBMARINES | AIRCRAFT

ENCLAVE INDEPENDENT
SIPR | NIPR | SCI networks | CENTRIXS

RF PATH INDEPENDENT
SATCOM | LOS

The ADNS Program ties together hardware, software, links and services to provide a mobile Wide Area Network (WAN)
- Network Routing Configurations/Architecture
- Security posture (to conform with DOD requirements)
- RF comms paths
- Terrestrial Entry Points (NCTAMS)
- LAN interfaces (platform dependent)
Dynamic networking architecture connects ships, submarines, aircraft. Applications provide capability to warfighters. Those applications function over the network.
Within current coverage area
Lab Facilities

- Building 33
 - Airborne Networking Lab
- Building 40
 - Gig-EF
- Building 660
 - ADNS lab
P-3 AIP ADNS (HFIP/INMARSAT)

Capabilities / CONOPS

SIPRNET access for P-3 via Navy CVN, Ships, TSC ashore & INMARSAT SATCOM to NCTAMS

- Chat
- Email
- Imagery exchange
- Web browsing

Facilitates dynamic maritime patrol, information sharing between aircraft & rear nodes: CAOC, CVN, MHQ/MOC, TSC/MOCC) and ground units.

Timeline / Accomplishments

- 2005: HFIP connectivity tested in Trident Warrior 05
- 2006: ADNS development of multi-link network connectivity
- 2007-08: INMARSAT Swift Broad Band development for wide bandwidth SATCOM connection

SATCOM connection enabled through NCTAMS
Goals and Objectives

- Develop a Fault-Tolerant All-IP Black Core Ciphertext Airborne Network Architecture.
- Employ HAIPE Complaint INE Devices
- Provide World-Wide Airborne Network Connectivity
Requirements

- Utilize Swift Broadband
 - Operational analysis suggests that SBB allows significant savings over SW64
- Enable class of service control
- Utilizes HAIPE devices
- Utilize ADNS as WAN architecture
- Secure RADIUS server

SSC San Diego…on Point and at the Center of C4ISR
Network Components

EMS AMT-50
EMS HSD-400
EMS CNX-300
KG-175D
Cisco 3270

SSC San Diego…on Point and at the Center of C4ISR
Initial Design

P-3C Aircraft Network (SSC-SD CTS Lab)
- Aircraft Workstation
- Plain Text Network
 - PT Router MAR 3270
- Cipher Text Network
 - CT Router MAR 3250
 - HSD-400 Terminal

Inmarsat Space Network

Shore ADNS & Fleet Infrastructure (SSC-SD ADNS Lab)
- Fleet Router Cisco 3745
 - IP Services
- Policy Switch Catalyst 6506
- Airborne Router Cisco 3845

Inmarsat Ground Network
- CT Router Cisco 3845
 - RADIUS Server

GRE Tunnels
RF Network
IPSec Tunnel
Design Considerations

Capabilities

• End-to-End connectivity between aircraft and shore classified networks
• Interoperable with shore ADNS networks
• Standard ADNS QoS policy enforcement

Limitations

• Requires GRE tunnels for Air-to-Ground routing
 – Cipher Text GRE tunnel
 – Plain Text GRE tunnel
• GRE tunnel overhead reduces available bandwidth
• No streaming class of service selection

SSC San Diego…on Point and at the Center of C4ISR
Terrestrial Connection

- Utilizing leased lines for connection between Navy WAN and Inmarsat MeetMe point
- Utilization of T-1 circuits vs. IP transport network
Leveraging Infrastructure

- SSC-San Diego is investigating future opportunities to utilize the SWBB connectivity to the ADNS WAN
- Improved connectivity supports future applications, sensors, and services
Summary

- Providing P-3AIP a SWBB capability over existing ADNS infrastructure
- Designing a cipher-text solution
- Working through accreditation issues
- Aircraft installation Sept 08

POC: Karl Gutekunst (619) 553-5025
nathan.gutekunst@navy.mil